前向插入式流速仪在工作时其探头会对待测流场造成干扰,该文对简化流速仪模型的干扰范围进行了测量和分析。简化模型仿毕托管(Pitot tube)形状,水平放置于明槽流场中,采用粒子图像测速(PIV)技术测得代表性平面瞬时二维流场。通过分析流场的沿程变化特征,确定了流速仪模型对其正前方水流的影响距离。实验结果表明:流向速度随距模型顶点距离的增大逐渐增加最后趋于来流速度,而水流的展向速度、紊动强度和雷诺应力(Reynolds stress)均随距模型顶点距离的增大而逐渐减小最后趋于稳定;流速仪对其前方水流的流速影响距离较大,对紊动强度的影响距离较小;流速仪对前方水流影响距离随模型直径增大而增大,在实验条件下,影响距离与模型直径成正比。
Abstract
Horizontal plug-in flow meters disturb the velocity fields when deployed to measure rates flow. The spatial extent of such disturbances has been experimentally studied here on a simplified flow meter model. The Pitot tube used as the flow model was placed horizontally in the water flow with instantaneous two-dimensional velocity fields also measured by particle image velocimetry (PIV). Analysis of the spatial variations of the velocity fields in front of the model shows that the streamwise velocity increases with the distance from the model nose and gradually approaches that of the incoming flow with the spanwise velocity, turbulent intensities, and Reynolds stresses decreasing with the distance. The streamwise velocity requires the longest distance to recover from the disturbance with the turbulent intensity requires the shortest distance. The spatial extent of the disturbance is proportional to the flow meter diameter.
关键词
粒子图像测速(PIV) /
毕托管 /
流速 /
紊动强度 /
雷诺应力
Key words
particle image velocimetry (PIV) /
Pitot tube /
velocity /
turbulence intensity /
Reynolds stress
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
"[1] Baines W D. Effects of velocity distribution on wind loads and flow patterns on buildings[C]//Proceedings of the Symposium No. 16 Wind Effects on Buildings and Structures. Teddington, UK:National Measurement Institute, 1963:197-225. [2] Hussein H J, Martinuzzi R J. Energy balance for turbulent flow around a surface mounted cube placed in a channel[J]. Physics of Fluids, 1996, 8(3):764-780. [3] Fabris D, Muller S J, Liepmann D. Wake measurements for flow around a sphere in a viscoelastic fluid[J]. Physics of Fluids, 1999, 11(12):3599-3612. [4] CUI Lishui, HU Heming, LI Chunhui. Experimental investigation to calibrate Pitot-tube by laser doppler anemometer[J]. Acta Metrologica Sinica, 2014, 35(6):603-606. [5] Jiang Z Y, Liang Z L, Tang Y L, et al. Numerical simulation and experimental study of hydrodynamics of artificial reef model in current[J]. Chinese Journal of Oceanology and Limnology, 2010, 2(28):267-273. [6] 刘焕芳, 文辉, 李强. 圆柱绕流无沙区试验研究[J]. 水科学进展, 1998, 9(2):159-163.LIU Huanfang, WEN Hui, LI Qiang. Experiment study of the region non-sediment movement in cylinder circulation flow[J]. Advances in Water Science, 1998, 9(2):159-163. (in Chinese) [7] Westerweel J, Elsinga G E, Adrian R J. Particle image velocimetry for complex and turbulent flows[J]. Annual Review of Fluid Mechanics, 2013, 45:409-436. [8] 陈启刚. 基于高频PIV的明渠湍流涡结构研究[D]. 北京:清华大学, 2014.CHEN Qigang. High-frequency Measurement of Vortices in Open Channel Flow with Particle Image Velocimetry[D]. Beijing:Tsinghua University, 2014. (in Chinese) [9] 陈槐, 李丹勋, 陈启刚, 等. 明渠恒定均匀流试验中尾门的影响范围[J]. 实验流体力学, 2013, 27(4):12-16.CHEN Huai, LI Danxun, CHEN Qigang, et al. Influence of tail gate on uniform open channel flows[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4):12-16. (in Chinese) [10] 王龙, 李丹勋, 王兴奎. 高帧频明渠紊流粒子图像测速系统的研制与应用[J]. 水利学报, 2008, 39(7):781-787.WANG Long, LI Danxun, WANG Xingkui. High frame open channel turbulence flow[J]. Journal of Hydraulic Engineering, 2008, 39(7):781-787. (in Chinese) [11] Scarano F, Riethmuller M. Advances in iterative multigrid PIV image processing[J]. Experiments in Fluids, 2000, 29:51-60. [12] 张兆顺, 崔桂香. 流体力学[M]. 北京:清华大学出版社, 2006.ZHANG Zhaoshun, CUI Guixiang. Fluid Dynamics[M]. Beijing:Tsinghua University Press, 2006. (in Chinese)"