基于GATE仿真的分光法探测器优化设计

石涵, PENG Qiyu, 许剑锋, 都东

清华大学学报(自然科学版) ›› 2016, Vol. 56 ›› Issue (2) : 200-205.

PDF(2029 KB)
PDF(2029 KB)
清华大学学报(自然科学版) ›› 2016, Vol. 56 ›› Issue (2) : 200-205. DOI: 10.16511/j.cnki.qhdxxb.2016.22.009
机械工程

基于GATE仿真的分光法探测器优化设计

  • 石涵1, PENG Qiyu2, 许剑锋3, 都东1
作者信息 +

GATE simulation based light sharing detector optimization

  • SHI Han1, PENG Qiyu2, XU Jianfeng3, DU Dong1
Author information +
文章历史 +

摘要

基于分光法的晶体阵列解码技术是正电子发射成像系统最为高效的探测器设计方案之一, 但目前基于分光法的晶体阵列解码设计依赖于经验和实验迭代, 晶体解码和分光层设计缺少有效的仿真方法。该文采用了GATE仿真软件, 对分光法的探测器进行建模仿真, 提出了逐列逼近的优化算法对分光层反光片进行长度优化设计, 且对优化仿真中主要参数进行了分析, 并组装4 mm × 4 mm×25 mm、12×12阵列实验模块对所提方法进行验证。实验结果表明: 该基于GATE仿真的优化设计方法能有效实现分光法探测器晶体阵列解码的仿真以及解码斑点均匀分布的反光片长度优化设计。

Abstract

Crystal array decoding based on light sharing is one of the most efficient detector design schemes. However, detector module design depends heavily on the designer's experience and intuition and is largely based on trial and error. Simulations are needed to study the crystal array decoding and light sharing layer design. The GATE simulation toolkit is used to simulate a light sharing based detector with the reflectors in the light sharing layer then optimized by a column approximation optimization algorithm. Some key parameters in the simulation are then analyzed. The results show that the GATE simulation based optimization method can efficiently optimize the crystal array decoding in a light sharing detector.

关键词

正电子发射成像 / GATE / 探测器设计

Key words

positron emission tomography / GATE / detector design

引用本文

导出引用
石涵, PENG Qiyu, 许剑锋, 都东. 基于GATE仿真的分光法探测器优化设计[J]. 清华大学学报(自然科学版). 2016, 56(2): 200-205 https://doi.org/10.16511/j.cnki.qhdxxb.2016.22.009
SHI Han, PENG Qiyu, XU Jianfeng, DU Dong. GATE simulation based light sharing detector optimization[J]. Journal of Tsinghua University(Science and Technology). 2016, 56(2): 200-205 https://doi.org/10.16511/j.cnki.qhdxxb.2016.22.009
中图分类号: R445   

参考文献

[1] Casey M, Nutt R. A multicrystal 2-dimensional BGO detector system for position emission tomography [J]. IEEE Transactions on Nuclear Science, 1986, 33: 460-463.
[2] Wong W, Yokoyama S, Uribe J, et al. An elongated position sensitive block detector design using the PMT quadrant-sharing configuration and asymmetric light partition [J]. IEEE Transactions on Nuclear Science, 1999, 46: 542-545.
[3] Ramirez R, Liu R, Liu J, et al. High-resolution L(Y)SO detectors using PMT-quadrant-sharing for human and animal PET cameras [J]. IEEE Transactions on Nuclear Science, 2008, 55: 862-869.
[4] Lee Y, Kim J, Kim K, et al. Performance measurement of PSF modeling reconstruction (True X) on Siemens Biograph TruePoint TrueV PET/CT [J]. Annals of Nuclear Medicine, 2014, 28: 340-348.
[5] Daube-Witherspoon M, Surti S, Perkins A, et al. The imaging performance of a LaBr3-based PET scanner [J]. Physics in Medicine and Biology, 2010, 55: 45-64.
[6] Geramifar P, Ay M, Shamsaie M, et al. Monte Carlo based performance assessment of four commercial GE discovery PET/CT scanners using GATE [C]//Proc of IEEE Nuclear Science Symposium and Medical Imaging Conference. Dresden, Germany, 2009: 3270-3274.
[7] Kuhn A, Surti S, Karp J, et al. Design of a lanthanum bromide detector for time-of-flight PET [J]. IEEE Transactions on Nuclear Science, 2004, 51: 2550-2557.
[8] Strul D, Santin G, Lazaro D, et al. GATE (Geant4 application for tomographic emission): A PET/SPECT general-purpose simulation platform [J]. Nuclear Physics B: Proceedings Supplements, 2003, 125: 75-79.
[9] Van-der-Laan D, Schaart D, Maas M, et al. Optical simulation of monolithic scintillator detectors using GATE/GEANT4 [J]. Physics in Medicine and Biology, 2010, 55: 1659-1675.
[10] Peng H, Olcott P, Spanoudaki V, et al. Investigation of a clinical PET detector module design that employs large-area avalanche photodetectors [J]. Physics in Medicine and Biology, 2011, 56: 3603-3627.
[11] Vilardi I, Braem A, Chesi E, et al. Optimization of the effective light attenuation length of YAP:Ce and LYSO:Ce crystals for a novel geometrical PET concept [J]. Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 564: 506-514.
[12] Janecek M, Moses W. Simulating scintillator light collection using measured optical reflectance [J]. IEEE Transactions on Nuclear Science, 2010, 57: 964-970.
[13] WEI Qingyang, WANG Shi, MA Tianyu, et al. Influence factors of two dimensional position map on photomultiplier detector block designed by quadrant sharing technique [J]. Nuclear Science and Techniques, 2011, 22: 224-229.

基金

国家国际科技合作专项资助项目(2013DFB30270)

PDF(2029 KB)

Accesses

Citation

Detail

段落导航
相关文章

/