为了在实际应用中降低分布式天线系统(distributed antenna system, DAS)的功耗,实现绿色移动通信的目标,该文研究了在同时包括传输功耗和电路功耗的实际功耗模型下,发送端仅知大尺度信道状态信息时的下行DAS系统的总功耗优化问题。采取了联合发送天线选择和功率分配方案,然后将原问题分解为一系列可用有效算法求解的子问题,最后在此基础上提出了一种低复杂度的联合排序选择和功率分配算法。仿真结果表明:所提算法在满足用户遍历容量需求时,可以使系统总功耗得到显著降低。该方案可以用较低的系统开销,实现DAS的实用性能提升。
Abstract
The power consumption in distributed antenna systems (DAS) is reduced for green mobile communications by optimizing the total power consumption in downlink DAS with only large-scale channel state information at the transmitter (CSIT) using a practical power consumption model including both the transmission power and the circuit power. The scheme combines transmit antenna selection and power allocation, decomposes the original problem into a series of sub-problems, each of which can be solved by efficient algorithms. The result is a low-complexity joint ordering selection and power allocation algorithm. Simulations show that the total power consumption is reduced considerably by this algorithm while satisfying the ergodic capacity requirements of the users. Thus, this scheme provides practical performance enhancement for DAS with low system overhead.
关键词
移动通信 /
分布式天线系统 /
电路功耗 /
大尺度信道状态信息
Key words
mobile communications /
distributed antenna systems (DAS) /
circuit power consumption /
large-scale channel state information at the transmitter (CSIT)
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Han C, Harrold T, Armour S, et al. Green radio:radio techniques to enable energy-efficient wireless networks[J]. IEEE Commun Mag, 2011, 49(6):46-54.
[2] FENG Wei, GE Ning, LU Jianhua. Hierarchical transmission optimization for massively dense distributed antenna systems[J]. IEEE Commun Lett, 2015, 19(4):673-676.
[3] FENG Wei, WANG Yanmin, GE Ning, et al. Virtual MIMO in multi-cell distributed antenna systems:coordinated transmissions with large-scale CSIT[J]. IEEE J Sel Areas Commun, 2013, 31(10):2067-2081.
[4] FENG Wei, WANG Yanmin, GE Ning, et al. Adaptive inter-cell coordination for the distributed antenna system with correlated antenna-clusters[C]//Proc ICC 2014. Sydney, Australia:IEEE Press, 2014:5567-5572.
[5] FENG Wei, LI Yunzhou, GAN Jiansong, et al. On the deployment of antenna elements in generalized multi-user distributed antenna systems[J]. Mobile Netw Appl, 2011, 16(1):35-45.
[6] Cui S G, Goldsmith A J, Bahai A. Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks[J]. IEEE J Sel Areas Commun, 2004, 22(6):1089-1098.
[7] He C, Li G Y, Zheng F, et al. Energy-efficient resource allocation in OFDM systems with distributed antennas[J]. IEEE Trans Veh Technol, 2014, 63(3):1223-1231.
[8] Jiang C, Cimini L J. Antenna selection for energy-efficient MIMO transmission[J]. IEEE Wireless Commun Lett, 2012, 1(6):577-580.
[9] Li Y, Sheng M, Zhang Y, et al. Energy-efficient antenna selection and power allocation in downlink distributed antenna systems:a stochastic optimization approach[C]//Proc ICC 2014. Sydney, Australia:IEEE Press, 2014:4963-4968.
[10] Wang Y, Feng W, Xiao L, et al. Coordinated multi-cell transmission for distributed antenna systems with partial CSIT[J].IEEE Commun Lett, 2012,16(7):1044-1047.
[11] FENG Wei, ZHANG Xiujun, ZHOU Shidong, et al. Downlink power allocation for distributed antenna systems with random antenna layout[C]//Proc VTC 2009-Fall. Anchorage, AK, USA:IEEE Press, 2009:1-5.
[12] WANG Tan, WANG Ying. Joint resource allocations in distributed antenna systems with coherent transmitter[C]//Proc GLOBECOM Workshops 2011. Houston, TX, USA:IEEE Press, 2011:194-198.
[13] Liu A, Lau V K N. Joint power and antenna selection optimization for energy-efficient large distributed MIMO networks[C]//Proc ICCS 2012. Singapore:IEEE Press, 2012:230-234.
[14] Telatar E. Capacity of multi-antenna Gaussian channels[J].Eur Trans Telecomm, 1999,10(6):585-596.
[15] Boyd S, Vandenberghe L. Convex Optimization[M]. Cambridge, UK:Cambridge Univ Press, 2004.
基金
国家“九七三”重点基础研究项目(2012CB316002);国家“八六三”高技术项目(2014AA01A703)