Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (7): 735-742    DOI: 10.16511/j.cnki.qhdxxb.2016.24.018
  化学与化学工程 本期目录 | 过刊浏览 | 高级检索 |
耦合变压吸附简化模型的提纯回用氢网络协调优化
邓春1, 周业扬1, 江苇1, 冯霄2
1. 中国石油大学(北京) 化学工程学院, 重质油国家重点实验室, 北京 102249;
2. 西安交通大学 化学工程与技术学院, 西安 710049
Coordinated optimization of hydrogen networks with purification reuse coupled with a shortcut model of the pressure swing adsorption
DENG Chun1, ZHOU Yeyang1, JIANG Wei1, FENG Xiao2
1. State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum-Beijing, Beijing 102249, China;
2. School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(1430 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 采用变压吸附(PSA)装置提纯含氢流股并回用至加氢过程,可以缓解炼油厂氢气亏缺的现状。该文采用了变压吸附简化模型,构建了提纯回用氢网络模型,以氢公用工程用量为目标函数,建立优化的数学模型,使用商业优化软件GAMS(general algebraic modeling system)平台建模,用DICOPT(discrete and continuous optimizer)作为求解器。案例研究结果表明:变压吸附装置存在最优入口氢气纯度。当吸附和解吸压力比增大、吸附选择性减小时,变压吸附的氢气回收率增大,氢公用工程用量减小。从氢网络优化的角度来说,一味地增加变压吸附装置入口流股氢气纯度以提高回收率的手段并不可取。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓春
周业扬
江苇
冯霄
关键词 过程系统氢网络优化数学规划法变压吸附(PSA)提纯回用    
Abstract:Pressure swing adsorption (PSA) is used to purify hydrogen streams with the upgraded streams reused by hydroprocessing units to increase the hydrogen supply in refineries. This study used a PSA shortcut model to construct a hydrogen network design with purification reuse. The mathematical model used the minimum hydrogen utility as the objective function with the commercial optimization software GAMS (general algebraic modeling system) to solve the problem with DICOPT (discrete and continuous optimizer) as the solver. The results of a case study show that the PSA device has the optimal inlet hydrogen purity. As the adsorption and desorption pressure ratio increases and the adsorbent selectivity decreases, the PSA hydrogen recovery increases and the hydrogen utility decreases. The hydrogen network optimization shows that designers should not blindly increase the PSA inlet hydrogen purity to enhance the hydrogen recovery.
Key wordsprocess system    hydrogen network    optimization    mathematical programming    pressure swing adsorption (PSA)    purification reuse
收稿日期: 2015-08-25      出版日期: 2016-07-15
ZTFLH:  TQ021.8  
基金资助:国家“九七三”重点基础研究资助项目(2012CB720500);国家自然科学基金资助项目(21576287,U1162121);中国博士后科学基金资助项目(2015M570215);中国石油大学(北京)科研基金资助项目(2462015YQ0305,2462015BJB02)
引用本文:   
邓春, 周业扬, 江苇, 冯霄. 耦合变压吸附简化模型的提纯回用氢网络协调优化[J]. 清华大学学报(自然科学版), 2016, 56(7): 735-742.
DENG Chun, ZHOU Yeyang, JIANG Wei, FENG Xiao. Coordinated optimization of hydrogen networks with purification reuse coupled with a shortcut model of the pressure swing adsorption. Journal of Tsinghua University(Science and Technology), 2016, 56(7): 735-742.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.24.018  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I7/735
  图1 提纯回用氢网络模型
  表1 氢源数据
  表2 氢阱数据
  表3 压缩机数据
  图2 PSA 入口氢气纯度为76.02%的优化氢网络
  图3 PSA 的入口氢气纯度对氢公用工程用量的影响
  图4 PSA 入口氢气纯度为80%的优化氢网络
  图5 PSA 的吸附和解吸压力比对氢公用工程用量的影响
  图6 PSA 的吸附选择性对氢公用工程用量的影响
[1] Alves J J, Towler G P. Analysis of refinery hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2002, 41(23):5759-5769.
[2] El-Halwagi M M, Gabriel F, Harell D. Rigorous graphical targeting for resource conservation via material recycle/reuse networks[J]. Industrial & Engineering Chemistry Research, 2003, 42(19):4319-4328.
[3] Foo D C Y, Manan Z A. Setting the minimum utility gas flowrate targets using cascade analysis technique[J]. Industrial & Engineering Chemistry Research, 2006, 45(17):5986-5995.
[4] Agrawal V, Shenoy U V. Unified conceptual approach to targeting and design of water and hydrogen networks[J]. American Institute of Chemical Engineers Journal, 2006, 52(3):1071-1082.
[5] DENG Chun, ZHOU Yuhang, CHEN Chengliang, et al. Systematic approach for targeting interplant hydrogen networks[J]. Energy, 2015, 90(1):68-88.
[6] Hallale N, LIU Fang. Refinery hydrogen management for clean fuels production[J]. Advances in Environmental Research, 2001, 6(1):81-98.
[7] Ahmad M I, ZHANG Nan, Jobson M. Modelling and optimisation for design of hydrogen networks for multi-period operation[J]. Journal of Cleaner Production, 2010, 18(9):889-899.
[8] LIAO Zuwei, WANG Jingdai, YANG Yongrong, et al. Integrating purifiers in refinery hydrogen networks:A retrofit case study[J]. Journal of Cleaner Production, 2010, 18(3):233-241.
[9] JIA Nan, ZHANG Nan. Multi-component optimisation for refinery hydrogen networks[J]. Energy, 2011, 36(8):4663-4670.
[10] DENG Chun, PAN Huaimin, LI Yantao, et al. Comparative analysis of different scenarios for the synthesis of refinery hydrogen network[J]. Applied Thermal Engineering, 2014, 70(2):1162-1179.
[11] DENG Chun, PAN Huaimin, LEE Juiyuan, et al. Synthesis of hydrogen network with hydrogen header of intermediate purity[J]. International Journal of Hydrogen Energy, 2014, 39(25):13049-13062.
[12] Umana B, Shoaib A, ZHANG Nan, et al. Integrating hydroprocessors in refinery hydrogen network optimisation[J]. Applied Energy, 2014, 133(10):169-182.
[13] LIU Fang, ZHANG Nan. Strategy of purifier selection and integration in hydrogen networks[J]. Chemical Engineering Research & Design, 2004, 82(10):1315-1330.
[14] Lacava A I, Shirley A I, Ramachandran R. How to specify pressure-swing adsorption units[J]. Chemical Engineering, 1998, 105(6):110-118.
[15] Knaebel, K S. The basics of adsorber design[J]. Chemical Engineering, 1999, 106(4):92-101.
[16] 邓春, 周业扬, 陈杰, 等. 石化园区厂际提纯回用氢气系统优化[J]. 化工学报, 2014, 65(12):4914-4920.DENG Chun, ZHOU Yeyang, CHEN Jie, et al. Optimization of inter-plant hydrogen system with purification reuse in petrochemical complex[J]. Chemical Industry and Engineering Society of China Journal, 2014, 65(12):4914-4920. (in Chinese)
[17] Elkamel A, Alhajri I, Almansoori A, et al. Integration of hydrogen management in refinery planning with rigorous process models and product quality specifications[J]. International Journal of Process Systems Engineering, 2011, 1(3):302-330.
[1] 王振宇, 王磊. 多策略帝王蝶优化算法及其工程应用[J]. 清华大学学报(自然科学版), 2024, 64(4): 668-678.
[2] 王斌, 张继文, 吴丹. 基于机器人建模的航空装配测控仿真分析方法[J]. 清华大学学报(自然科学版), 2024, 64(4): 724-737.
[3] 刘安邦, 陈曦, 赵千川, 李博睿. 地铁线路储能装置与牵引装置联合优化配置方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1408-1414.
[4] 张潇月, 李玥, 王晨杨, 陈正侠, 贾海峰. 面向不同需求的未来社区海绵源头设施布局方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1483-1492.
[5] 周迎千, 冯霄, 杨敏博. 基于压缩机选型的炼厂氢网络集成[J]. 清华大学学报(自然科学版), 2023, 63(5): 723-729.
[6] 张琳, 王金玉, 王鑫, 王伟, 曲立. 重大自然灾害下多灾害点应急物资智能调度优化[J]. 清华大学学报(自然科学版), 2023, 63(5): 765-774.
[7] 余志健, 杨倩雯, 王译晨, 杨东, 朱民. 燃烧振荡声学抑制器的机理分析与设计优化[J]. 清华大学学报(自然科学版), 2023, 63(4): 487-504.
[8] 张青松, 贾山, 陈金宝, 徐颖珊, 佘智勇, 蔡成志, 潘一华. 组合体无人机单体机翼构型设计与拓扑优化[J]. 清华大学学报(自然科学版), 2023, 63(3): 423-432.
[9] 臧金蕊, 焦朋朋, 宋国华, 王天实, 王健宇. 基于机动车比功率分布的生态驾驶评价与轨迹优化[J]. 清华大学学报(自然科学版), 2023, 63(11): 1760-1769.
[10] 代鑫, 陈举师, 陈涛, 黄弘, 李志鹏, 余水平. 抽水蓄能电站应急排水多目标优化方法及算例分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1558-1565.
[11] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[12] 吴青建, 吴宏宇, 江智宏, 杨运强, 阎绍泽, 谭莉杰. 面向水下定点探测的水下滑翔机控制参数优化[J]. 清华大学学报(自然科学版), 2023, 63(1): 62-70.
[13] 于雪菲, 张帅, 刘琳琳, 都健. 基于信息间隙决策理论的碳捕集电厂调度[J]. 清华大学学报(自然科学版), 2022, 62(9): 1467-1473.
[14] 张明, 王恩志, 刘耀儒, 齐文彪, 王德辉. 利用多项式混沌展开的结构可靠性分析[J]. 清华大学学报(自然科学版), 2022, 62(8): 1314-1320.
[15] 郇宁, 姚恩建. 城际组合出行行为建模及应用研究进展[J]. 清华大学学报(自然科学版), 2022, 62(7): 1112-1120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn