锥形节流阀的三维流-固耦合非稳态动力学特性仿真分析

吕振华, 李明

清华大学学报(自然科学版) ›› 2018, Vol. 58 ›› Issue (1) : 35-42.

PDF(3369 KB)
PDF(3369 KB)
清华大学学报(自然科学版) ›› 2018, Vol. 58 ›› Issue (1) : 35-42. DOI: 10.16511/j.cnki.qhdxxb.2018.22.006
汽车工程

锥形节流阀的三维流-固耦合非稳态动力学特性仿真分析

  • 吕振华, 李明
作者信息 +

Simulations of the unsteady fluid-structure coupling characteristics of a conical orifice valve

  • LÜ Zhenhua, LI Ming
Author information +
文章历史 +

摘要

针对特种重型车辆用液阻减振装置的一种锥形节流阀的动态工作过程,建立了该阀较精细的三维流-固耦合有限元仿真分析模型,利用直接耦合计算方法求解入口瞬态流速激励下锥阀的耦合动力学响应;通过对锥阀在多种弹性压紧力特性、结构设计状态和多种入口流速激励工况下的流体压强差及速度分布、阀门开度及阀芯受力等动态响应的细致量化分析,解释了锥阀流-固耦合自激振动现象的机理:当弹簧预紧力较大而入口流速较小时,锥阀在开启过程中必然出现阀门开度高频波动、阀芯回弹接触冲击等流-固耦合自激振动现象;取消弹簧预紧力,即可有效地抑制阀门开启过程的非稳态自激振动;入口流速幅值较大时,阀门开启波动过程缩短。这些认识对于解决许多流体阀系存在的流-固耦合自激振动问题具有重要意义。

Abstract

The dynamics of a conical orifice valve in a heavy-duty vehicle damper were analyzed using 3-D fluid-structure coupling finite element models solved using the direct coupling computational method. The results show the internal 3-D transient fluid pressure and velocity distributions for transient inlet flow rates and the unsteady high-frequency fluctuations of the valve opening and the forces on the valve. The dynamic responses are given for various compression spring characteristics, valve structure parameters and inlet flow rates to understand the fluid-structure coupling self-excited vibrations of the valve. The results show that heavily preloaded valve springs and small inlet flow rates lead to high-frequency fluctuations of the valve opening and collisions of the core onto the seat. In addition, a zero preload of the valve spring eliminates the fluid-structure coupling vibrations and large inlet flow rates reduce the unsteady opening fluctuations. These conclusions are important for understanding fluid-structure coupling self-excited vibration problems in valves.

关键词

三维流-固耦合动力学 / 自激振动 / 有限元仿真 / 直接耦合计算方法 / 锥形节流阀 / 液阻减振器

Key words

3-D fluid-structure coupling dynamics / self-exited vibration / finite-element simulation / direct coupling numerical method / conical orifice valve / hydraulic damper

引用本文

导出引用
吕振华, 李明. 锥形节流阀的三维流-固耦合非稳态动力学特性仿真分析[J]. 清华大学学报(自然科学版). 2018, 58(1): 35-42 https://doi.org/10.16511/j.cnki.qhdxxb.2018.22.006
LÜ Zhenhua, LI Ming. Simulations of the unsteady fluid-structure coupling characteristics of a conical orifice valve[J]. Journal of Tsinghua University(Science and Technology). 2018, 58(1): 35-42 https://doi.org/10.16511/j.cnki.qhdxxb.2018.22.006
中图分类号: TH113.1    O323   

参考文献

[1] 吕振华, 李世民. 筒式液阻减振器动态特性模拟分析技术的发展[J]. 清华大学学报(自然科学版), 2002, 42(11):1532-1536. LÜ Z H, LI S M. Simulation techniques for nonlinear dynamic characteristics of telescopic hydraulic dampers[J]. Journal of Tsinghua University (Science and Technology), 2002, 42(11):1532-1536. (in Chinese)[2] 吕振华, 姜利泉. 基于液-固耦合有限元分析方法的气-液型减振器补偿阀性能研究[J]. 工程力学, 2006, 23(11):163-169. LÜ Z H, JIANG L Q. FSI FEA simulation of liquid-supplement valves in gas-pressurized hydraulic dampers[J]. Engineering Mechanics, 2006, 23(11):163-169. (in Chinese)[3] CHOI Y S, LEE J H, JEONG W B, et al. Dynamic behavior of valve system in linear compressor based on fluid-structure interaction[J]. Journal of Mechanical Science and Technology, 2010, 24(7):1371-1377.[4] MIN W, JI H, YANG L. Axial vibration in a poppet valve based on fluid-structure interaction[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2014, 229(17):1-8.[5] SHAMS M, EBRAHIMI R, RAOUFI A, et al. CFD-FEA analysis of hydraulic shock absorber valve behavior[J]. International Journal of Automotive Technology, 2007, 8(5):615-622.[6] 刘君, 徐春光, 张帆. 电磁阀动态特性的流固耦合模拟研究[J]. 推进技术, 2015, 36(7):968-975. LIU J, XU C G, ZHANG F. Fluid-structure interaction simulation of dynamic properties of electro-magnetic valve[J]. Journal of Propulsion Technology, 2015, 36(7):968-975. (in Chinese)[7] 王雯, 傅卫平, 孔祥剑, 等. 单座式调节阀阀芯-阀杆系统流固耦合振动研究[J]. 农业机械学报, 2014, 45(5):291-298. WANG W, FU W P, KONG X J, et al. Research on fluid-structure coupling vibration of valve core-stem system in a single-type control valve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5):291-298. (in Chinese)[8] BAZSÓC, H?S C J. An experimental study on the stabilityof a direct spring loaded poppet relief valve[J]. Journal of Fluids and Structures, 2013, 42:456-465.[9] YI D, LU L, ZOU J, et al. Interactions between poppet vibration and cavitation in relief valve[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2015, 229(8):1447-1461.[10] HAYASHI S. Instability of poppet valve circuit[J]. JSME International Journal Series C:Dynamics, Control, Robotics, Design and Manufacturing, 1995, 38(3):357-366.[11] HAYASHI S, HAYASE T, KURAHASHI T. Chaos in a hydraulic control valve[J]. Journal of Fluids and Structures, 1997, 11(6):693-716.[12] MISRA A, BEHDINAN K, CLEGHORN W L. Self-excited vibration of a control valve due to fluid-structure interaction[J]. Journal of Fluids and Structures, 2002, 16(5):649-665.[13] BAZSÓC, CHAMPNEYS A R, H?S C J. Bifurcation analysis of a simplified model of a pressure relief valve attached to a pipe[J]. SIAM Journal on Applied Dynamical Systems, 2014, 13(2):704-721.[14] 马威, 马飞, 周志鸿, 等. 液压溢流阀的失稳分析和实验研究[J]. 工程科学学报, 2016, 38(1):135-142. MA W, MA F, ZHOU Z H, et al. Instability analysis and experimental study of a hydraulic relief valve[J]. Chinese Journal of Engineering, 2016, 38(1):135-142. (in Chinese)[15] YONEZAWA K, OGAWA R, OGI K, et al. Flow-induced vibration of a steam control valve[J]. Journal of Fluids and Structures, 2012, 35:76-88.[16] BEUNE A, KUERTEN J G M, VAN HEUMEN M P C. CFD analysis with fluid-structure interaction of opening high-pressure safety valves[J]. Computers and Fluids, 2012, 64(3):108-116.[17] QIAN J Y, WEI L, JIN Z J, et al. CFD analysis on the dynamic flow characteristics of the pilot-control globe valve[J]. Energy Conversion and Management, 2014, 87:220-226.[18] LI C, LIEN F, YEE E, et al. Multiphase flow simulations of poppet valve noise and vibration:SAE technical paper 2015-01-0666[R]. Warrendale, PA, USA:SAE, 2015.[19] ADINA R&D INC. Theory and modeling guide, volume Ⅲ:ADINA CFD & FSI:Report ARD 13-10[R/OL].[2017-02-12]. http://www.adina.com/adinadownloads/docs/tmg-f_89.pdf.[20] RUGONYI S, BATHE K J. On finite element analysis of fluid flows fully coupled with structural interactions[J]. CMES:Computer Modeling in Engineering and Sciences, 2001, 2(2):195-212.[21] SOULI M, OUAHSINE A, LEWIN L. ALE formulation for fluid-structure interaction problems[J]. Computer Method in Applied Mechanics and Engineering, 2000, 190(5-7):659-675.[22] 李明, 吕振华. 一种锥形节流阀工作过程流-固耦合动力学响应的影响因素分析[J]. 工程力学, 2017, 34(9):239-247. LI M, LÜ Z H. FSI dynamic response analyses of a conical orifice valve during working process with several major influences[J]. Engineering Mechanics, 2017, 34(9):239-247. (in Chinese)

PDF(3369 KB)

Accesses

Citation

Detail

段落导航
相关文章

/