Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (1): 35-42    DOI: 10.16511/j.cnki.qhdxxb.2018.22.006
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
锥形节流阀的三维流-固耦合非稳态动力学特性仿真分析
吕振华, 李明
清华大学 汽车工程系, 北京 100084
Simulations of the unsteady fluid-structure coupling characteristics of a conical orifice valve
LÜ Zhenhua, LI Ming
Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(3369 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对特种重型车辆用液阻减振装置的一种锥形节流阀的动态工作过程,建立了该阀较精细的三维流-固耦合有限元仿真分析模型,利用直接耦合计算方法求解入口瞬态流速激励下锥阀的耦合动力学响应;通过对锥阀在多种弹性压紧力特性、结构设计状态和多种入口流速激励工况下的流体压强差及速度分布、阀门开度及阀芯受力等动态响应的细致量化分析,解释了锥阀流-固耦合自激振动现象的机理:当弹簧预紧力较大而入口流速较小时,锥阀在开启过程中必然出现阀门开度高频波动、阀芯回弹接触冲击等流-固耦合自激振动现象;取消弹簧预紧力,即可有效地抑制阀门开启过程的非稳态自激振动;入口流速幅值较大时,阀门开启波动过程缩短。这些认识对于解决许多流体阀系存在的流-固耦合自激振动问题具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 三维流-固耦合动力学自激振动有限元仿真直接耦合计算方法锥形节流阀液阻减振器    
Abstract:The dynamics of a conical orifice valve in a heavy-duty vehicle damper were analyzed using 3-D fluid-structure coupling finite element models solved using the direct coupling computational method. The results show the internal 3-D transient fluid pressure and velocity distributions for transient inlet flow rates and the unsteady high-frequency fluctuations of the valve opening and the forces on the valve. The dynamic responses are given for various compression spring characteristics, valve structure parameters and inlet flow rates to understand the fluid-structure coupling self-excited vibrations of the valve. The results show that heavily preloaded valve springs and small inlet flow rates lead to high-frequency fluctuations of the valve opening and collisions of the core onto the seat. In addition, a zero preload of the valve spring eliminates the fluid-structure coupling vibrations and large inlet flow rates reduce the unsteady opening fluctuations. These conclusions are important for understanding fluid-structure coupling self-excited vibration problems in valves.
Key words3-D fluid-structure coupling dynamics    self-exited vibration    finite-element simulation    direct coupling numerical method    conical orifice valve    hydraulic damper
收稿日期: 2017-03-24      出版日期: 2018-01-15
ZTFLH:  TH113.1  
  O323  
引用本文:   
吕振华, 李明. 锥形节流阀的三维流-固耦合非稳态动力学特性仿真分析[J]. 清华大学学报(自然科学版), 2018, 58(1): 35-42.
LÜ Zhenhua, LI Ming. Simulations of the unsteady fluid-structure coupling characteristics of a conical orifice valve. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 35-42.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.006  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I1/35
  图1 锥阀机构示意图
  图2 锥阀流 固耦合有限元模型及其边界条件设置
  表1 材料的力学参数
  图3 入口流速 时间历程
  图4 (网络版彩图)锥阀在典型时刻的压强与速度分布
  图5 锥阀动力学响应时间历程
  图6 锥阀阀芯受力分析
  图7 弹簧压紧力特性参数对锥阀动力学特性的影响
  表2 具有不同弹簧压紧力特性参数的模型及响应特征
  表3 不同入口流速幅值工况下 M0模型的响应特征
  表4 锥阀结构参数影响分析的模型特征及分析结果
  图8 入口流速幅值对锥阀动力学特性的影响
  图9 锥阀结构参数对其动力学响应特性的影响分析
[1] 吕振华, 李世民. 筒式液阻减振器动态特性模拟分析技术的发展[J]. 清华大学学报(自然科学版), 2002, 42(11):1532-1536. LÜ Z H, LI S M. Simulation techniques for nonlinear dynamic characteristics of telescopic hydraulic dampers[J]. Journal of Tsinghua University (Science and Technology), 2002, 42(11):1532-1536. (in Chinese)
[2] 吕振华, 姜利泉. 基于液-固耦合有限元分析方法的气-液型减振器补偿阀性能研究[J]. 工程力学, 2006, 23(11):163-169. LÜ Z H, JIANG L Q. FSI FEA simulation of liquid-supplement valves in gas-pressurized hydraulic dampers[J]. Engineering Mechanics, 2006, 23(11):163-169. (in Chinese)
[3] CHOI Y S, LEE J H, JEONG W B, et al. Dynamic behavior of valve system in linear compressor based on fluid-structure interaction[J]. Journal of Mechanical Science and Technology, 2010, 24(7):1371-1377.
[4] MIN W, JI H, YANG L. Axial vibration in a poppet valve based on fluid-structure interaction[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2014, 229(17):1-8.
[5] SHAMS M, EBRAHIMI R, RAOUFI A, et al. CFD-FEA analysis of hydraulic shock absorber valve behavior[J]. International Journal of Automotive Technology, 2007, 8(5):615-622.
[6] 刘君, 徐春光, 张帆. 电磁阀动态特性的流固耦合模拟研究[J]. 推进技术, 2015, 36(7):968-975. LIU J, XU C G, ZHANG F. Fluid-structure interaction simulation of dynamic properties of electro-magnetic valve[J]. Journal of Propulsion Technology, 2015, 36(7):968-975. (in Chinese)
[7] 王雯, 傅卫平, 孔祥剑, 等. 单座式调节阀阀芯-阀杆系统流固耦合振动研究[J]. 农业机械学报, 2014, 45(5):291-298. WANG W, FU W P, KONG X J, et al. Research on fluid-structure coupling vibration of valve core-stem system in a single-type control valve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5):291-298. (in Chinese)
[8] BAZSÓC, HOS C J. An experimental study on the stabilityof a direct spring loaded poppet relief valve[J]. Journal of Fluids and Structures, 2013, 42:456-465.
[9] YI D, LU L, ZOU J, et al. Interactions between poppet vibration and cavitation in relief valve[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2015, 229(8):1447-1461.
[10] HAYASHI S. Instability of poppet valve circuit[J]. JSME International Journal Series C:Dynamics, Control, Robotics, Design and Manufacturing, 1995, 38(3):357-366.
[11] HAYASHI S, HAYASE T, KURAHASHI T. Chaos in a hydraulic control valve[J]. Journal of Fluids and Structures, 1997, 11(6):693-716.
[12] MISRA A, BEHDINAN K, CLEGHORN W L. Self-excited vibration of a control valve due to fluid-structure interaction[J]. Journal of Fluids and Structures, 2002, 16(5):649-665.
[13] BAZSÓC, CHAMPNEYS A R, HOS C J. Bifurcation analysis of a simplified model of a pressure relief valve attached to a pipe[J]. SIAM Journal on Applied Dynamical Systems, 2014, 13(2):704-721.
[14] 马威, 马飞, 周志鸿, 等. 液压溢流阀的失稳分析和实验研究[J]. 工程科学学报, 2016, 38(1):135-142. MA W, MA F, ZHOU Z H, et al. Instability analysis and experimental study of a hydraulic relief valve[J]. Chinese Journal of Engineering, 2016, 38(1):135-142. (in Chinese)
[15] YONEZAWA K, OGAWA R, OGI K, et al. Flow-induced vibration of a steam control valve[J]. Journal of Fluids and Structures, 2012, 35:76-88.
[16] BEUNE A, KUERTEN J G M, VAN HEUMEN M P C. CFD analysis with fluid-structure interaction of opening high-pressure safety valves[J]. Computers and Fluids, 2012, 64(3):108-116.
[17] QIAN J Y, WEI L, JIN Z J, et al. CFD analysis on the dynamic flow characteristics of the pilot-control globe valve[J]. Energy Conversion and Management, 2014, 87:220-226.
[18] LI C, LIEN F, YEE E, et al. Multiphase flow simulations of poppet valve noise and vibration:SAE technical paper 2015-01-0666[R]. Warrendale, PA, USA:SAE, 2015.
[19] ADINA R&D INC. Theory and modeling guide, volume Ⅲ:ADINA CFD & FSI:Report ARD 13-10[R/OL].[2017-02-12]. http://www.adina.com/adinadownloads/docs/tmg-f_89.pdf.
[20] RUGONYI S, BATHE K J. On finite element analysis of fluid flows fully coupled with structural interactions[J]. CMES:Computer Modeling in Engineering and Sciences, 2001, 2(2):195-212.
[21] SOULI M, OUAHSINE A, LEWIN L. ALE formulation for fluid-structure interaction problems[J]. Computer Method in Applied Mechanics and Engineering, 2000, 190(5-7):659-675.
[22] 李明, 吕振华. 一种锥形节流阀工作过程流-固耦合动力学响应的影响因素分析[J]. 工程力学, 2017, 34(9):239-247. LI M, LÜ Z H. FSI dynamic response analyses of a conical orifice valve during working process with several major influences[J]. Engineering Mechanics, 2017, 34(9):239-247. (in Chinese)
[1] 周伟, 李敏, 丘铭军, 张西龙, 柳江, 张洪波. 基于改进遗传算法的车身板件厚度优化[J]. 清华大学学报(自然科学版), 2022, 62(3): 523-532.
[2] 黄伟灿, 蒋晓华, 薛芃, 李欣阳, 沈稚栋, 孙宇光. 超导直流能源管道载流导体设计[J]. 清华大学学报(自然科学版), 2022, 62(10): 1715-1720.
[3] 许伟, 赵争鸣, 姜齐荣. 高频变压器分布电容计算方法[J]. 清华大学学报(自然科学版), 2021, 61(10): 1088-1096.
[4] 徐文雪,吕振华. 双气室式液阻减振器阻尼特性的三维流固耦合有限元仿真分析[J]. 清华大学学报(自然科学版), 2021, 61(1): 11-20.
[5] 吕振华, 刘赛. 枪弹穿甲过程仿真的有限元接触模型与分区并行计算误差特性[J]. 清华大学学报(自然科学版), 2017, 57(5): 483-490.
[6] 贾晓红, 陈华明, 励行根, 王玉明. 石墨垫片密封界面的力学特性[J]. 清华大学学报(自然科学版), 2016, 56(2): 167-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn