基于时间延迟动态预测的自动驾驶控制

赵建辉, 高洪波, 张新钰, 张颖麟

清华大学学报(自然科学版) ›› 2018, Vol. 58 ›› Issue (4) : 432-437.

PDF(2280 KB)
PDF(2280 KB)
清华大学学报(自然科学版) ›› 2018, Vol. 58 ›› Issue (4) : 432-437. DOI: 10.16511/j.cnki.qhdxxb.2018.21.011
汽车工程

基于时间延迟动态预测的自动驾驶控制

  • 赵建辉1, 高洪波2, 张新钰3, 张颖麟4
作者信息 +

Automatic driving control based on time delay dynamic predictions

  • ZHAO Jianhui1, GAO Hongbo2, ZHANG Xinyu3, ZHANG Yinglin4
Author information +
文章历史 +

摘要

由于驾驶过程中的延迟和前视距离等因素,无人车无法准确跟踪规划轨迹。该文通过选择简化的自行车车辆模型,在纯跟踪模型的基础上对原有的算法进行优化,提出了一种基于动态延迟预测的自动驾驶控制方法。通过车辆运动学模型预测延迟后的车辆运动方向和位置信息,并根据行驶方向和轨迹方向之间的偏差值,获得最佳前视距离。MATLAB仿真结果表明,改进的算法可以以7 m/s的行驶速度跟踪规划轨迹,平均误差可以控制在0.3 m以内,跟踪性能优于传统的纯跟踪方法。

Abstract

Signal delays, limited frontal view distances and other factors during self-driving limit the ability of self-driving cars to accurately track their planning trajectory. A simplified bicycle model was used to optimize a classical pure tracking model in an automatic driving control method based on dynamic delay prediction. A vehicle kinematics model is used to predict the vehicle motion direction and position after the delay. The optimal front sight distance is obtained according to difference between driving the actual direction and the tracking direction. MATLAB simulations show that this algorithm can track the planning trajectory at a maximum speed of 7 m/s with the average error controlled to within 0.3 m. Thus, the tracking performance is better than the traditional pure pursuit method.

关键词

智能驾驶 / 车载摄像头 / 复杂交通环境

Key words

intelligent driving / on-board camera / complex traffic environment

引用本文

导出引用
赵建辉, 高洪波, 张新钰, 张颖麟. 基于时间延迟动态预测的自动驾驶控制[J]. 清华大学学报(自然科学版). 2018, 58(4): 432-437 https://doi.org/10.16511/j.cnki.qhdxxb.2018.21.011
ZHAO Jianhui, GAO Hongbo, ZHANG Xinyu, ZHANG Yinglin. Automatic driving control based on time delay dynamic predictions[J]. Journal of Tsinghua University(Science and Technology). 2018, 58(4): 432-437 https://doi.org/10.16511/j.cnki.qhdxxb.2018.21.011
中图分类号: TP399   

参考文献

[1] PAPADIMITRATOS P, DE LA FORTELLE A, EVENSSEN K, et al. Vehicular communication systems:Enabling technologies, applications, and future outlook on intelligent transportation[J]. IEEE Communications Magazine, 2009, 47(11):84-95.
[2] PLÖCHL M, EDELMANN J. Driver models in automobile dynamics application[J]. Vehicle System Dynamics, 2007, 45(7-8):699-741.
[3] CRAWFORD D W, TALAMANTES I D, EMPTAGE T, et al. Interactive lean sensor for controlling a vehicle motion system and navigating virtual environments:US Patent 9120021[P]. 2015-09-01.
[4] LUO L H. Adaptive cruise control design with consideration of humans' driving psychology[C]//Proceedings of the 11th World Congress on Intelligent Control and Automation. Shenyang, China:IEEE, 2014:2973-2978.
[5] BELLA F. Driving simulator for speed research on two-lane rural roads[J]. Accident Analysis & Prevention, 2008, 40(3):1078-1087.
[6] SETLUR P, WAGNER J R, DAWSON D M, et al. A trajectory tracking steer-by-wire control system for ground vehicles[J]. IEEE Transactions on Vehicular Technology, 2006, 55(1):76-85.
[7] GUO L, GE P S, YUE M, et al. Lane changing trajectory planning and tracking controller design for intelligent vehicle running on curved road[J]. Mathematical Problems in Engineering, 2014, 2014:478573.
[8] YI J G, SONG D Z, ZHANG J J, et al. Adaptive trajectory tracking control of skid-steered mobile robots[C]//Proceedings of the 2007 IEEE International Conference on Robotics and Automation. Roma, Italy:IEEE, 2007:2605-2610.
[9] LI S T, WEI W, WANG R B. Study on control structure for the automated guided vehicle base on visual navigation[C]//Proceedings of the 27th Chinese Control and Decision Conference. Qingdao, China:IEEE, 2015:2515-2518.
[10] ZHANG M, MA W Q, LIU Z X, et al. Fuzzy-adaptive control method for off-road vehicle guidance system[J].Mathematical and Computer Modelling, 2013, 58(3-4):551-555.
[11] ELBANHAWI M, SIMIC M, JAZAR R. Receding horizon lateral vehicle control for pure pursuit path tracking[J]. Journalof Vibration and Control, 2018, 24(3):619-642.
[12] 韩科立, 朱忠祥, 毛恩荣, 等. 基于最优控制的导航拖拉机速度与航向联合控制方法[J]. 农业机械学报, 2013, 44(2):165-170. HAN K L, ZHU Z X, MAO E R, et al. Joint control method of speed and heading of navigation tractor based on optimal control[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2):165-170. (in Chinese)
[13] YEU T K, PARK S J, HONG S, et al. Path tracking using vector pursuit algorithm for tracked vehicles driving on the soft cohesive soil[C]//Proceedings of the 2006 SICE-ICASE International Joint Conference. Busan, South Korea:IEEE, 2006:2781-2786.
[14] KISE M, NOGUCHI N, ISHⅡ K, et al. Development of the agricultural autonomous tractor with an RTK-GPS and a fog[J]. IFAC Proceedings Volumes, 2001, 34(19):99-104.
[15] 陈军, 朱忠祥, 鸟巢谅, 等. 拖拉机沿曲线路径的跟踪控制[J]. 农业工程学报, 2006, 22(11):108-111. CHEN J, ZHU Z X, RYO T, et al. On-tracking control of tractor running along curved paths[J]. Transactions of the CSAE, 2006, 22(11):108-111. (in Chinese)
[16] COULTER R C. Implementation of the pure pursuit path tracking algorithm:Technical Report, CMU-RI-TR-92-01[R]. Pittsburgh, PA:Robotics Institute, Carnegie Mellon University, 1992.
[17] KELLY A. A feedforward control approach to the local navigation problem for autonomous vehicles:Technical Report, CMU-RI-TR-94-17[R]. Pittsburgh, PA:Robotics Institute, Carnegie Mellon University, 1994.

基金

国家重点研究和发展计划(2016YFB0100903);北京市科学技术委员会重大专项(d171100005017002,d171100005117002);中国博士后基金(2017M620765)

PDF(2280 KB)

Accesses

Citation

Detail

段落导航
相关文章

/