Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (7): 544-550    DOI: 10.16511/j.cnki.qhdxxb.2019.21.019
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
下肢外骨骼人机互连装置对关节内力的影响
李银波, 汤子汉, 季林红, 蒙奎霖, 李质斌, 关鑫宇
清华大学 机械工程系, 摩擦学国家重点实验室智能与生物机械分室, 北京 100084
Physical human-robot interface for lower limb exoskeletons to affect internal joint forces
LI Yinbo, TANG Zihan, JI Linhong, MENG Kuilin, LI Zhibin, GUAN Xinyu
Division of Intelligent and Biomechanical System, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1577 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 下肢外骨骼能够帮助截瘫患者、偏瘫患者重获行走能力,但由于生理原因和装配原因,外骨骼关节与人体关节的转轴无法重合,导致人机间出现不良的交互力,进而会影响人体的关节、软组织内力。传统下肢外骨骼的人机互连装置无法解决人机关节转轴不重合带来的问题,该文设计了一种基于滑块导轨机构、可自适应补偿人机关节转轴偏差的新型下肢外骨骼人机互连装置,并分别对人体穿戴配备有本装置和传统装置的下肢外骨骼行走时摆动一侧人体下肢进行了静力学分析。计算结果表明:相比传统装置,新型装置能使人体关节内力更为平稳,并且可减小人体髋关节的内力:当人机关节转轴在矢状面内出现竖直偏差时,内力平均可减少2.45%;当人机关节转轴在矢状面内出现水平偏差时,内力平均可减少11.23%。该装置也可影响人体膝关节的内力,当人机关节转轴在矢状面内出现竖直偏差时,内力平均可减少13.68%;当人机转轴在矢状面内出现水平偏差时,内力反而平均增大23.48%。本文初步验证了该装置的可行性,它对降低人体髋关节和膝关节软骨、软组织处的磨损均有积极意义,从而可以改善使用者的外骨骼穿戴体验。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李银波
汤子汉
季林红
蒙奎霖
李质斌
关鑫宇
关键词 下肢外骨骼人机互连装置关节内力转轴偏差    
Abstract:Lower limb exoskeletons (LLEs) can assist paraplegic or hemiplegic patients to regain movement. However, different physiological structures and assembly errors create undesirable forces between the human and the exoskeleton, which result in undesired loadings on the joints and soft tissues of the user. Traditional physical human-robot interfaces of LLEs are unable to solve this problem. This study developed a physical human-robot interface for LLEs that focused on the internal joint forces through comparisons with traditional physical human-robot interfaces. A statics analysis of the forces on the human lower limb during the swing phase showed that this device stabilizes the internal joint forces. The device reduces the internal joint force on the human hip by 2.45% on average when there is vertical difference in the sagittal plane between the human hip joint and the exoskeleton hip joint and by 11.23% on average when there is horizontal difference in the sagittal plane between the human hip joint and the exoskeleton hip joint. The device also reduces the force on the human knee by 13.68% when there is vertical difference in the sagittal plane between the human knee joint and the exoskeleton knee joint, but increases the force on the human knee by 23.48% when there is horizontal difference in the sagittal plane between the human knee joint and the exoskeleton knee joint. This paper shows that this device can reduce the wear on the human hip and knee cartilage and soft tissues; thereby improving the exoskeleton experience for patients.
Key wordslower limb exoskeletons    physical human-robot interface    internal joint force    axis misalignment
收稿日期: 2018-12-28      出版日期: 2019-06-21
基金资助:国家自然科学基金中德合作交流项目(51761135121)
通讯作者: 关鑫宇,助理研究员,E-mail:guanxy13@mails.tsinghua.edu.cn     E-mail: guanxy13@mails.tsinghua.edu.cn
引用本文:   
李银波, 汤子汉, 季林红, 蒙奎霖, 李质斌, 关鑫宇. 下肢外骨骼人机互连装置对关节内力的影响[J]. 清华大学学报(自然科学版), 2019, 59(7): 544-550.
LI Yinbo, TANG Zihan, JI Linhong, MENG Kuilin, LI Zhibin, GUAN Xinyu. Physical human-robot interface for lower limb exoskeletons to affect internal joint forces. Journal of Tsinghua University(Science and Technology), 2019, 59(7): 544-550.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.21.019  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I7/544
  图1 新型下肢外骨骼人机互连装置
  图2 人机关节转轴在矢状面内存在竖直偏差Δy时,患者使用传统下肢外骨骼人机互连装置时摆动一侧下肢静力学分析
  图3 人机关节转轴在矢状面内存在竖直偏差Δy时, 患者使用新型下肢外骨骼人机互连装置时摆动一侧下肢静力学分析(对应参数的含义与图2中相同)
  表1 人体模型参数
  图4 使用传统和新型下肢外骨骼人机互连装置时摆动一侧人体髋关节内力随关节转角的变化
  图5 与传统装置相比, 新型下肢外骨骼人机互连装置应用于人体大腿时, 摆动一侧人体髋关节内力在不同人机关节转轴偏差下的变化
  图6 使用传统和新型下肢外骨骼人机互连装置时人体膝关节内力随关节转角的变化
  图7 与传统装置相比, 新型下肢外骨骼人机互连装置应用于人体大腿时, 摆动一侧人体膝关节内力在不同人机关节转轴偏差下的变化
[1] 关鑫宇. 脊髓损伤患者无静力储能外骨骼设计及助行方法研究[D]. 北京:清华大学, 2017. GUAN X Y. Unpowered energy-stored exoskeleton development and walking assistance for patients with spinal cord injury[D]. Beijing:Tsinghua University, 2017. (in Chinese)
[2] CHEN B, MA H, QIN L Y, et al. Recent developments and challenges of lower extremity exoskeletons[J]. Journal Orthopaedic Translation, 2016, 5:26-37.
[3] DOLLAR A M, HERR H. Lower extremity exoskeletons and active orthoses:Challenges and state-of-the-art[J]. IEEE Transactions on Robotics, 2008, 24(1):144-158.
[4] 邓楚慧. 穿戴式下肢康复机器人机构分析及优化设计[D]. 北京:北京工业大学, 2012. Deng C H. Analysis and optimization design of wearable lower extremity rehabilitation robot mechanism[D]. Beijing:Beijing University of Technology, 2012. (in Chinese)
[5] 贾山. 下肢外骨骼的静力学分析与运动规划[D]. 南京:东南大学, 2016. JIA S. Dynamics and motion planning of lower extremity exoskeleton[D]. Nanjing:Southest University, 2016. (in Chinese)
[6] ESQUENAZI A, TALATY M, JAYARAMAN A. Powered exoskeletons for walking assistance in persons with central nervous system injuries:A narrative review[J]. Physical Medicine and Rehabilitation, 2017, 9(1):46-62.
[7] ZHANG X, YUE Z, Wang J. Robotics in lower-limb rehabilitation after stroke[J]. Behavioural Neurology, 2017, 2017:1-13. DOI:10.1155/2017/3731802.
[8] 杨正东. 截瘫助行外骨骼步态规划与人机协调性的研究[D]. 北京:清华大学, 2014. YANG Z D. Gait planning and human-machine coordination study of walk assisting exoskeleton for paraplegics[D]. Beijing:Tsinghua University, 2014. (in Chinese)
[9] ESQUENAZI A, TALATY M, PACKEL A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury[J]. American Journal of Physical Medicine & Rehabilitation, 2012, 91(11):911-21.
[10] PRANSKY J. The Pransky interview:Russ Angold, co-founder and president of Ekso (TM) labs[J]. Industrial Robot-an International Journal, 2014, 41(4):329-334.
[11] CEMPINI M, M S M, ROSSI D, et al. Self-alignment mechanisms for assistive wearable robots:A kinetostatic compatibility method[J]. IEEE Transactions on Robotics, 2013, 29(1):236-250.
[12] D'ELIA N, VANETTI F, CEMPINI M, et al. Physical human-robot interaction of an active pelvis orthosis:Toward ergonomic assessment of wearable robots[J]. Journal of Neuroengineering and Rehabilitation, 2017, 14(51):29.
[13] LEE Y, KIM Y J, LEE J, et al. Biomechanical design of a novel flexible exoskeleton for lower extremities[J]. IEEE-ASME Transactions on Mechatronics, 2017, 22(5):2058-2069.
[14] WHITTLE M W. An introduction to gait analysis[M]. London, UK:Elsevier Health Sciences, 2007.
[15] 金德闻.康复工程与生物机械学[M]. 北京:清华大学, 2011. JIN D W. Bio-mechanology in rehabilitation engineering[M]. Beijing:Tsinghua University, 2011. (in Chinese)
[16] 樊鸣鸣. 人体皮肤摩擦特性的试验研究[D]. 南京:南京航空航天大学, 2010. FAN M M. Experimental study on frictional properties of human skin[D]. Nanjing:Nanjing University of Aeronautics and Astronautic, 2010. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn