Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (3): 254-262    DOI: 10.16511/j.cnki.qhdxxb.2019.26.019
  核能与新能源工程 本期目录 | 过刊浏览 | 高级检索 |
质子交换膜燃料电池电压损耗
赵阳, 王树博, 李微微, 谢晓峰
清华大学 核能与新能源技术研究院, 北京 100084
Polarization of the membrane electrode assembly in a proton exchange membrane fuel cell
ZHAO Yang, WANG Shubo, LI Weiwei, XIE Xiaofeng
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(1415 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 质子交换膜燃料电池电压损耗的定量分析,对于寻求膜电极性能的提升空间具有重要的参考意义。该文以实验室自制的膜电极为研究对象,对其内部损耗、ohm极化、活化极化以及浓差极化依次进行了实验分析。结果表明:在阴极铂载量为0.2 mg/cm2的膜电极中,活化极化在整体电压损耗中所占比例最高,这一现象在低温下愈发明显;ohm极化的占比最小,电流密度为1 550 mA/cm2时,其最大值约为0.09 V;浓差极化在低电流密度区域的影响较小,在大电流密度区域以指数形式增长。经过对浓差极化的分析发现,40%~44%的氧气扩散阻力主要来源于气体扩散层内的分子扩散阻力,43%~50%的氧气扩散阻力主要来源于氧气穿过离聚物层到达铂表面的阻力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵阳
王树博
李微微
谢晓峰
关键词 质子交换膜燃料电池电压损耗活化极化ohm极化浓差极化    
Abstract:The performance of a proton exchange membrane fuel cell depends on the membrane electrode assembly (MEA) polarization. The characteristics of a home-made MEA with various polarizations were measured to calculate the internal losses, activation polarization, ohmic polarization, and mass transfer polarization. The results show that the activation polarization has a large effect, especially at low temperatures, while the ohmic polarization has little effect with a maximum difference of about 0.09 V for a current density of 1550 mA/cm2. The mass transfer polarization effect increases rapidly as the current density increases. Moreover, 40%-44% of the oxygen transport resistance comes from the molecular diffusion resistance in the gas diffusion layer with 43%-50% of the resistance originating from the oxygen dissolution and diffusion through the ionomer layer.
Key wordsproton exchange membrane fuel cell    voltage losses    activation polarization    ohmic polarization    concentration polarization
收稿日期: 2019-03-13      出版日期: 2020-03-03
基金资助:国家重点研发计划项目(2017YFB0103003,2017YFB0103003)
通讯作者: 谢晓峰,副研究员,E-mail:xiexf@tsinghua.edu.cn     E-mail: xiexf@tsinghua.edu.cn
引用本文:   
赵阳, 王树博, 李微微, 谢晓峰. 质子交换膜燃料电池电压损耗[J]. 清华大学学报(自然科学版), 2020, 60(3): 254-262.
ZHAO Yang, WANG Shubo, LI Weiwei, XIE Xiaofeng. Polarization of the membrane electrode assembly in a proton exchange membrane fuel cell. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 254-262.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.019  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I3/254
  图1 氢/空燃料电池极化曲线
  表1 不同温度下的理论电极电势
  图2 线性伏安扫描曲线
  图3 EIS测试曲线
  图4 ohm阻抗及ohm极化的大小
  图5 不同电流密度下的活化极化
  图6 不同温度下的浓差极化
  图7 不同平衡气下的极化曲线
  图8 氧气传递阻力的分解
[1] LI X, ZHAO Y, FENG Z M, et al. Ring-opening metathesis polymerization for the preparation of polynorbornene-based proton exchange membranes with high proton conductivity[J]. Journal of Membrane Science, 2017, 528:55-63.
[2] U. S. Department of Energy. Fuel cell technical team roadmap[R], New York:U.S. Drive Partnership, 2017.
[3] KONGKANAND A. Highly-accessible catalysts for durable high-power performance. (2017-06-07). https://www.hydrogen.energy.gov/pdfs/review17/fc144_kongkanand_2017_o.pdf
[4] 吴玉厚,陈士忠. 质子交换膜燃料电池的水管理研究[M]. 北京:科学出版社, 2011.WU Y H, CHEN S Z. Water management of proton exchange membrane fuel cell[M]. Beijing:Science Press, 2011. (in Chinese)
[5] CHOO M J, OH K H, PARK J K, et al. Analysis of oxygen transport in cathode catalyst layer of low-Pt-loaded fuel cells[J]. ChemElectroChem, 2015, 2(3):382-388.
[6] WILLIAMS M V, KUNZ H R, FENTON J M. Analysis of polarization curves to evaluate polarization sources in hydrogen/air PEM fuel cells[J]. Journal of The Electrochemical Society, 2005, 152(3):635-644.
[7] NONOYAMA N, OKAZAKI S, WEBER A Z, et al. Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells[J]. Journal of The Electrochemical Society, 2011, 158(4):416-423.
[8] SUZUKI T, MURATA H, HATANAKA T, et al. Analysis of the catalyst layer of polymer electrolyte fuel cells[J]. R & D Review Toyota CRDL, 2003, 39(3):33-38.
[9] BAKER D R, CAULK D A, NEYERLIN K C, et al. Measurement of oxygen transport resistance in PEM fuel cells by limiting current methods[J]. Journal of The Electrochemical Society, 2009, 156(9):991-1003.
[10] MASHIO T, OHMA A, YAMAMOTO S, et al. Analysis of reactant gas transport in a catalyst layer[J]. ECS Transactions, 2007, 11(1):529-540.
[11] WILLIAMS M V, KUNZ H R, FENTON J M. Influence of convection through gas-diffusion layers on limiting current in PEM FCs using a serpentine flow field[J]. Journal of the Electrochemical Society, 2004, 151(10):1617-1627.
[12] ST-PIERRE J. Hydrogen mass transport in fuel cell gas diffusion electrodes[J]. Fuel Cells, 2011, 11(2):263-273.
[13] RESHETENKO T V, ST-PIERRE J. PEMFC GDE oxygen mass transport coefficient separation with different gas diluents[J]. ECS Transactions, 2013, 50(2):549-555.
[14] KLOSE C, BREITWIESER M, VIERRATH S, et al. Electrospun sulfonated poly (ether ketone) nanofibers as proton conductive reinforcement for durable Nafion composite membranes[J]. Journal of Power Sources, 2017, 361:237-242.
[15] COOPER K R, RAMANI V, FENTON J M, et al. Experimental methods and data analyses for polymer electrolyte fuel cells[M]. North Carolina:Scribner Associates, 2005.
[16] 徐华池,裴普成,吴子尧. 质子交换膜燃料电池氢气渗透电流及电子电阻检测方法[J]. 清华大学学报(自然科学版), 2016, 56(6):587-591.XU H C, PEI P C, WU Z Y. Hydrogen crossover current and electronic resistance detection in a PEM fuel cell[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(6):587-591. (in Chinese)
[17] COOPER K R, SMITH M. Electrical test methods for on-line fuel cell ohmic resistance measurement[J]. Journal of Power Sources, 2006, 160(2):1088-1095.
[18] ZHAO X S, LI W, FU Y Z, et al. Influence of ionomer content on the proton conduction and oxygen transport in the carbon-supported catalyst layers in DMFC[J]. International Journal of Hydrogen Energy, 2012, 37(12):9845-9852.
[19] NEYERLIN K C, GU W B, JORNE J, et al. Cathode catalyst utilization for the ORR in a PEMFC analytical model and experimental validation[J]. Journal of The Electrochemical Society, 2007, 154(2):279-287.
[20] THOMPSON E L, JORNE J, GU W B, et al. PEM fuel cell operation at -20℃. II. Ice formation dynamics, current distribution, and voltage losses within electrodes[J]. Journal of The Electrochemical Society, 2008, 155(9):887-896.
[21] CIMENTI M, BESSARABOV D, TAM M, et al. Investigation of proton transport in the catalyst layer of PEM fuel cells by electrochemical impedance spectroscopy[J]. ECS transactions, 2010, 28(23):147-157.
[22] BARBIR F. PEM fuel cells:Theory and practice[M]. 2nd ed. San Diego:Elsevier, 2005.
[23] GU W, BAKER D R, LIU Y, et al. Proton exchange membrane fuel cell (PEMFC) down-the-channel performance model[M]. Handbook of fuel cells. Chichester:John Wiley & Sons, 2010.
[24] GASTEIGER H A, GU W, MAKHARIA R, et al. Beginning-of-life MEA performance-efficiency loss contributions[M]//VIELSTICH W, GASTEIGER H A, YOKOKAWA H, et al. Handbook of fuel cells. New Jersey:John Wiley & Sons, 2010:398-417.
[25] XU H, SONG Y, KUNZ H R, et al. Effect of elevated temperature and reduced relative humidity on ORR kinetics for PEM fuel cells[J]. Journal of The Electrochemical Society, 2005, 152(9):1828-1836.
[26] OH H, LIY I, LEE G, et al. Experimental dissection of oxygen transport resistance in the components of a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2017, 345:67-77.
[1] 王泽英, 陈涛, 张继伟, 陈金奇, 冯政恒. 基于仿生结构流场的质子交换膜燃料电池的性能[J]. 清华大学学报(自然科学版), 2022, 62(10): 1697-1705.
[2] 裴普成, 李子钊, 任棚, 陈东方, 王希忠. PEM燃料电池用金属双极板及其涂层的研究进展[J]. 清华大学学报(自然科学版), 2021, 61(10): 1025-1038.
[3] 李雪, 张虹, 林程, 王树博, 谢晓峰. 直接膜沉积制备高性能增强型质子交换膜燃料电池膜电极[J]. 清华大学学报(自然科学版), 2021, 61(10): 1039-1045.
[4] 李子君, 王树博, 李微微, 朱彤, 谢晓峰. 波形流道增强质子交换膜燃料电池性能[J]. 清华大学学报(自然科学版), 2021, 61(10): 1046-1054.
[5] 杨家培, 马骁, 雷体蔓, 罗开红, 帅石金. 燃料电池扩散层与流道中液态水传输数值模拟与协同优化[J]. 清华大学学报(自然科学版), 2019, 59(7): 580-586.
[6] 李跃华, 裴普成, 吴子尧, 贾肖宁. 质子交换膜燃料电池阴极单相流压降模型及验证[J]. 清华大学学报(自然科学版), 2018, 58(1): 43-49.
[7] 徐华池, 裴普成, 吴子尧. 质子交换膜燃料电池氢气渗透电流及电子电阻检测方法[J]. 清华大学学报(自然科学版), 2016, 56(6): 587-591.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn