Abstract:The performance of a proton exchange membrane fuel cell depends on the membrane electrode assembly (MEA) polarization. The characteristics of a home-made MEA with various polarizations were measured to calculate the internal losses, activation polarization, ohmic polarization, and mass transfer polarization. The results show that the activation polarization has a large effect, especially at low temperatures, while the ohmic polarization has little effect with a maximum difference of about 0.09 V for a current density of 1550 mA/cm2. The mass transfer polarization effect increases rapidly as the current density increases. Moreover, 40%-44% of the oxygen transport resistance comes from the molecular diffusion resistance in the gas diffusion layer with 43%-50% of the resistance originating from the oxygen dissolution and diffusion through the ionomer layer.
赵阳, 王树博, 李微微, 谢晓峰. 质子交换膜燃料电池电压损耗[J]. 清华大学学报(自然科学版), 2020, 60(3): 254-262.
ZHAO Yang, WANG Shubo, LI Weiwei, XIE Xiaofeng. Polarization of the membrane electrode assembly in a proton exchange membrane fuel cell. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 254-262.
[1] LI X, ZHAO Y, FENG Z M, et al. Ring-opening metathesis polymerization for the preparation of polynorbornene-based proton exchange membranes with high proton conductivity[J]. Journal of Membrane Science, 2017, 528:55-63. [2] U. S. Department of Energy. Fuel cell technical team roadmap[R], New York:U.S. Drive Partnership, 2017. [3] KONGKANAND A. Highly-accessible catalysts for durable high-power performance. (2017-06-07). https://www.hydrogen.energy.gov/pdfs/review17/fc144_kongkanand_2017_o.pdf [4] 吴玉厚,陈士忠. 质子交换膜燃料电池的水管理研究[M]. 北京:科学出版社, 2011.WU Y H, CHEN S Z. Water management of proton exchange membrane fuel cell[M]. Beijing:Science Press, 2011. (in Chinese) [5] CHOO M J, OH K H, PARK J K, et al. Analysis of oxygen transport in cathode catalyst layer of low-Pt-loaded fuel cells[J]. ChemElectroChem, 2015, 2(3):382-388. [6] WILLIAMS M V, KUNZ H R, FENTON J M. Analysis of polarization curves to evaluate polarization sources in hydrogen/air PEM fuel cells[J]. Journal of The Electrochemical Society, 2005, 152(3):635-644. [7] NONOYAMA N, OKAZAKI S, WEBER A Z, et al. Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells[J]. Journal of The Electrochemical Society, 2011, 158(4):416-423. [8] SUZUKI T, MURATA H, HATANAKA T, et al. Analysis of the catalyst layer of polymer electrolyte fuel cells[J]. R & D Review Toyota CRDL, 2003, 39(3):33-38. [9] BAKER D R, CAULK D A, NEYERLIN K C, et al. Measurement of oxygen transport resistance in PEM fuel cells by limiting current methods[J]. Journal of The Electrochemical Society, 2009, 156(9):991-1003. [10] MASHIO T, OHMA A, YAMAMOTO S, et al. Analysis of reactant gas transport in a catalyst layer[J]. ECS Transactions, 2007, 11(1):529-540. [11] WILLIAMS M V, KUNZ H R, FENTON J M. Influence of convection through gas-diffusion layers on limiting current in PEM FCs using a serpentine flow field[J]. Journal of the Electrochemical Society, 2004, 151(10):1617-1627. [12] ST-PIERRE J. Hydrogen mass transport in fuel cell gas diffusion electrodes[J]. Fuel Cells, 2011, 11(2):263-273. [13] RESHETENKO T V, ST-PIERRE J. PEMFC GDE oxygen mass transport coefficient separation with different gas diluents[J]. ECS Transactions, 2013, 50(2):549-555. [14] KLOSE C, BREITWIESER M, VIERRATH S, et al. Electrospun sulfonated poly (ether ketone) nanofibers as proton conductive reinforcement for durable Nafion composite membranes[J]. Journal of Power Sources, 2017, 361:237-242. [15] COOPER K R, RAMANI V, FENTON J M, et al. Experimental methods and data analyses for polymer electrolyte fuel cells[M]. North Carolina:Scribner Associates, 2005. [16] 徐华池,裴普成,吴子尧. 质子交换膜燃料电池氢气渗透电流及电子电阻检测方法[J]. 清华大学学报(自然科学版), 2016, 56(6):587-591.XU H C, PEI P C, WU Z Y. Hydrogen crossover current and electronic resistance detection in a PEM fuel cell[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(6):587-591. (in Chinese) [17] COOPER K R, SMITH M. Electrical test methods for on-line fuel cell ohmic resistance measurement[J]. Journal of Power Sources, 2006, 160(2):1088-1095. [18] ZHAO X S, LI W, FU Y Z, et al. Influence of ionomer content on the proton conduction and oxygen transport in the carbon-supported catalyst layers in DMFC[J]. International Journal of Hydrogen Energy, 2012, 37(12):9845-9852. [19] NEYERLIN K C, GU W B, JORNE J, et al. Cathode catalyst utilization for the ORR in a PEMFC analytical model and experimental validation[J]. Journal of The Electrochemical Society, 2007, 154(2):279-287. [20] THOMPSON E L, JORNE J, GU W B, et al. PEM fuel cell operation at -20℃. II. Ice formation dynamics, current distribution, and voltage losses within electrodes[J]. Journal of The Electrochemical Society, 2008, 155(9):887-896. [21] CIMENTI M, BESSARABOV D, TAM M, et al. Investigation of proton transport in the catalyst layer of PEM fuel cells by electrochemical impedance spectroscopy[J]. ECS transactions, 2010, 28(23):147-157. [22] BARBIR F. PEM fuel cells:Theory and practice[M]. 2nd ed. San Diego:Elsevier, 2005. [23] GU W, BAKER D R, LIU Y, et al. Proton exchange membrane fuel cell (PEMFC) down-the-channel performance model[M]. Handbook of fuel cells. Chichester:John Wiley & Sons, 2010. [24] GASTEIGER H A, GU W, MAKHARIA R, et al. Beginning-of-life MEA performance-efficiency loss contributions[M]//VIELSTICH W, GASTEIGER H A, YOKOKAWA H, et al. Handbook of fuel cells. New Jersey:John Wiley & Sons, 2010:398-417. [25] XU H, SONG Y, KUNZ H R, et al. Effect of elevated temperature and reduced relative humidity on ORR kinetics for PEM fuel cells[J]. Journal of The Electrochemical Society, 2005, 152(9):1828-1836. [26] OH H, LIY I, LEE G, et al. Experimental dissection of oxygen transport resistance in the components of a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2017, 345:67-77.