转轮分离器风量和转速对叶片流道涡的影响

冯乐乐, 吴玉新, 张海, 张扬, 岳光溪

清华大学学报(自然科学版) ›› 2020, Vol. 60 ›› Issue (6) : 493-499.

PDF(2194 KB)
PDF(2194 KB)
清华大学学报(自然科学版) ›› 2020, Vol. 60 ›› Issue (6) : 493-499. DOI: 10.16511/j.cnki.qhdxxb.2020.25.018
专题:能源领域中的多相流动基础及应用

转轮分离器风量和转速对叶片流道涡的影响

  • 冯乐乐, 吴玉新, 张海, 张扬, 岳光溪
作者信息 +

Effect of air flow rate and rotational speed on vortices between neighboring blades in turbo air classifiers

  • FENG Lele, WU Yuxin, ZHANG Hai, ZHANG Yang, YUE Guangxi
Author information +
文章历史 +

摘要

研究转轮分离器相邻叶片间的流场对理解其气固分离行为非常重要。为此,该文利用粒子图像测速(particle image velocimetry,PIV)测量了不同转速、风量下转轮分离器叶片流道间的流场,然后利用坐标变换算法分析了相对切向速度和径向速度随转速的变化,并定量分析了叶片流道间旋涡的位置和涡量随转速、风量的变化。实验结果表明:在实验范围内,随着转速提高,旋涡先往转轮外部移动,再往转轮内部移动;随着转速提高,旋涡涡量先增大后减小;随着风量提高,旋涡位置变化不明显,而旋涡涡量不断增大;随着转速提高,总分离效率先升高后降低,切割粒径先减小后增大。这种非单调趋势可以用叶片间旋涡位置的变化和流道入口处相对切向速度的变化来解释。基于坐标变换的转轮机械流场分析可以避免拍摄时相机定位的误差,也便于分析气体相对于转动叶轮的运动。

Abstract

The flow field between neighboring blades strongly affects the gas-solid separation in air classifiers. The flow field between adjacent blades in a turbo air classifier was measured using a PIV (particle image velocimetry) system for various impeller rotational speeds and air flow rates. A coordinate transformation based algorithm was then used to analyze the relative motion between the particles and the blades. The relative tangential and radial velocity profiles at the blade passage inlet were also analyzed for various rotational speeds along with the changes of the vortex position and vorticity. As the rotational speed increases, the vortex first moves outwards and then inwards as the vorticity first increases and then decreases. The vortex position does not change much as the air flow rate increases, while the vorticity increases greatly. The overall separation efficiency first increases and then decreases as the rotational speed increases, while the cut size first decreases and then increases. These non-linear relationships correspond to the effect of the impeller rotational speed on the vortex position and the relative tangential velocity. The flow field analysis based on the coordinate transformation helps eliminate camera positioning errors and improves understanding of the gas-solid flow relative to the impeller.

关键词

粒子分离 / 粒子图像测速(PIV) / 算法 / 颗粒流 / 旋涡

Key words

particle separation / particle image velocimetry (PIV) / algorithm / granular flow / vortex

引用本文

导出引用
冯乐乐, 吴玉新, 张海, 张扬, 岳光溪. 转轮分离器风量和转速对叶片流道涡的影响[J]. 清华大学学报(自然科学版). 2020, 60(6): 493-499 https://doi.org/10.16511/j.cnki.qhdxxb.2020.25.018
FENG Lele, WU Yuxin, ZHANG Hai, ZHANG Yang, YUE Guangxi. Effect of air flow rate and rotational speed on vortices between neighboring blades in turbo air classifiers[J]. Journal of Tsinghua University(Science and Technology). 2020, 60(6): 493-499 https://doi.org/10.16511/j.cnki.qhdxxb.2020.25.018

参考文献

[1] GUIZANI R, MOKNI I, MHIRI H, et al. CFD modeling and analysis of the fish-hook effect on the rotor separator's efficiency[J]. Powder Technology, 2014, 264:149-157.
[2] BAUDER A, MÜLLER F, POLKE R. Investigations concerning the separation mechanism in deflector wheel classifiers[J]. International Journal of Mineral Processing, 2004, 74:S147-S154.
[3] GAO L P, YU Y, LIU J X. Study on the cut size of a turbo air classifier[J]. Powder Technology, 2013, 237:520-528.
[4] MORIMOTO H, SHAKOUCHI T. Classification of ultra fine powder by a new pneumatic type classifier[J]. Powder Technology, 2003, 131(1):71-79.
[5] SHAPIRO M, GALPERIN V. Air classification of solid particles:A review[J]. Chemical Engineering and Processing, 2005, 44(2):279-285.
[6] 杨庆良, 刘家祥. 涡流空气分级机内流场分析与转笼结构改进[J]. 化学工程, 2010, 38(1):79-83. YANG Q L, LIU J X. Analysis of flow field in turbo air classifier and improvement of rotor cage structure[J]. Chemical Engineering, 2010, 38(1):79-83. (in Chinese)
[7] 谌永祥, 荣云, 李双跃, 等. 进口风速和转速对涡流空气分级机流场的影响[J]. 浙江工业大学学报, 2015, 43(5):517-521. CHEN Y X, RONG Y, LI S Y, et al. Effect of inlet wind speed and rotating speed on flow field of vortex air classifier[J]. Journal of Zhejiang University of Technology, 2015, 43(5):517-521. (in Chinese)
[8] 高利苹, 于源, 刘家祥. 涡流空气分级机转笼转速对其分级精度的影响[J]. 化工学报, 2012, 63(4):1056-1062. GAO L P, YU Y, LIU J X. Effect of rotor cage rotary speed on classification accuracy in turbo air classifier[J]. CIESC Journal, 2012, 63(4):1056-1062. (in Chinese)
[9] 岳大鑫, 刁雄, 李双跃, 等. 基于颗粒轨迹分析的分级机切割粒径计算[J]. 化工进展, 2012, 31(9):1919-1925. YUE D X, DIAO X, LI S Y, et al. Computation of classifier cut size based on analysis of particle tracks[J]. Chemical Industry and Engineering Progress, 2012, 31(9):1919-1925. (in Chinese)
[10] GALK J, PEUKERT W, KRAHNEN J. Industrial classification in a new impeller wheel classifier[J]. Powder Technology, 1999, 105(1-3):186-189.
[11] LIU R R, LIU J X, YU Y. Effects of axial inclined guide vanes on a turbo air classifier[J]. Powder Technology, 2015, 280:1-9.
[12] 李进春, 李双跃, 任朝富. 涡流分级机异形叶片的数值模拟与试验研究[J]. 中国粉体技术, 2009, 15(3):1-4. LI J C, LI S Y, REN C F, et al. Study on heteromorphic vanes of vortex air classifier by numerical simulations and experiments[J]. China Powder Science and Technology, 2009, 15(3):1-4. (in Chinese)
[13] 黄强, 于源, 刘家祥. 涡流分级机转笼结构改进及内部流场数值模拟[J]. 化工学报, 2011, 62(5):1264-1268. HUANG Q, YU Y, LIU J X. Improvement on rotor cage structure of turbo air classifier and numerical simulation of inner flow field[J]. CIESC Journal, 2011, 62(5):1264-1268. (in Chinese)
[14] YU Y, LIU J X, ZHANG K. Establishment of a prediction model for the cut size of turbo air classifiers[J]. Powder Technology, 2014, 254:274-280.
[15] ALTUN O, BENZER H. Selection and mathematical modelling of high efficiency air classifiers[J]. Powder Technology, 2014, 264:1-8.
[16] 张胜林, 谌永祥, 李双跃. 涡流空气分级机工艺参数对窄级别产品粒径分布和产率的影响[J]. 化工进展, 2014, 33(5):1113-1117, 1155. ZHANG S L, CHEN Y X, LI S Y. Effects of process parameters on particle size distribution and productivity of narrow level product in turbo air classifier[J]. Chemical Industry and Engineering Progress, 2014, 33(5):1113-1117, 1155. (in Chinese)
[17] AFOLABI L, AROUSSI A, ISA N M. Numerical modelling of the carrier gas phase in a laboratory-scale coal classifier model[J]. Fuel Processing Technology, 2011, 92(3):556-562.
[18] TONEVA P, EPPLE P, BREUER M, et al. Grinding in an air classifier mill-Part I:Characterisation of the one-phase flow[J]. Powder Technology, 2011, 211(1):19-27.
[19] TONEVA P, WIRTH K E, PEUKERT W. Grinding in an air classifier mill-Part II:Characterisation of the two-phase flow[J]. Powder Technology, 2011, 211(1):28-37.
[20] VUTHALURU H B, PAREEK V K, VUTHALURU R. Multiphase flow simulation of a simplified coal pulveriser[J]. Fuel Processing Technology, 2005, 86(11):1195-1205.
[21] KARUNAKUMARI L, ESWARAIAH C, JAYANTI S, et al. Experimental and numerical study of a rotating wheel air classifier[J]. AIChE Journal, 2005, 51(3):776-790.
[22] 祝良明, 李双跃. SLK分级机两种进风口的数值模拟与实验[J]. 化工进展, 2013, 32(3):533-537. ZHU L M, LI S Y. Numerical simulation and experimental research about two kinds of air inlets in SLK classifier[J]. Chemical Industry and Engineering Progress, 2013, 32(3):533-537. (in Chinese)
[23] HUANG Q, LIU J X, YU Y. Turbo air classifier guide vane improvement and inner flow field numerical simulation[J]. Powder Technology, 2012, 226:10-15.
[24] 孙占朋, 孙国刚, 杨晓楠, 等. 竖直涡旋向对卧轮式分级机流场及性能影响[J]. 化工进展, 2017, 36(6):2045-2050. SUN Z P, SUN G G, YANG X N, et al. Effect of vertical vortex direction on flow field and performance of horizontal turbo air classifier[J]. Chemical Industry and Engineering Progress, 2017, 36(6):2045-2050. (in Chinese)
[25] GUO L J, LIU J X, LIU S Z, et al. Velocity measurements and flow field characteristic analyses in a turbo air classifier[J]. Powder Technology, 2007, 178(1):10-16.
[26] FENG Y G, LIU J X, LIU S Z. Effects of operating parameters on flow field in a turbo air classifier[J]. Minerals Engineering, 2008, 21(8):598-604.
[27] XING W J, WANG Y Z, ZHANG Y, et al. Experimental study on velocity field between two adjacent blades and gas-solid separation of a turbo air classifier[J]. Powder Technology, 2015, 286:240-245.
[28] MORTENSEN H H, CALABRESE R V, INNINGS F, et al. Characteristics of batch rotor-stator mixer performance elucidated by shaft torque and angle resolved PIV measurements[J]. The Canadian Journal of Chemical Engineering, 2011, 89(5):1076-1095.
[29] RANADE V V, PERRARD M, LE SAUZE N, et al. Trailing vortices of Rushton turbine:PIV measurements and CFD simulations with snapshot approach[J]. Chemical Engineering Research and Design, 2001, 79(1):3-12.
[30] SHARP K V, ADRIAN R J. PIV study of small-scale flow structure around a Rushton turbine[J]. AIChE Journal, 2001, 47(4):766-778.

基金

国家自然科学基金资助项目(51761125011)

PDF(2194 KB)

Accesses

Citation

Detail

段落导航
相关文章

/