Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (9): 715-725    DOI: 10.16511/j.cnki.qhdxxb.2020.26.016
  专题:能源地下结构与工程 本期目录 | 过刊浏览 | 高级检索 |
制冷工况相变能源桩热交换规律
崔宏志1, 邹金平1, 包小华1, 亓学栋1, 齐贺2
1. 深圳大学 土木与交通工程学院, 未来地下城市研究院, 深圳 518060;
2. 中建科技集团有限公司, 深圳 518000
Heat exchange behavior of the phase change energy pile under cooling condition
CUI Hongzhi1, ZOU Jinping1, BAO Xiaohua1, QI Xuedong1, QI He2
1. Underground Polis Academy, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China;
2. China Construction Science and Technology Group Co., Ltd., Shenzhen 518000, China
全文: PDF(20451 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 相变材料是一种通过改变材料物态来吸收或放出潜热的物质。将其用于能源地下结构中可以增加结构体的能量密度、提高换热量,从而减小热交换所需的地下空间资源。该文搭建了缩尺模型实验系统,其中模型圆桩为相变储能混凝土能源桩,桩直径0.2 m,桩长1.5 m,将桩埋入装有饱和砂土的尺寸为2.45 m×2.45 m×2 m的模型箱中。实验中控制换热流体温度恒定为5.5℃,分别进行了0.15、0.30和0.45 m3/h 3组不同流量的制冷工况,每种工况包括“制冷-回温”3次循环。研究了饱和砂土中相变能源桩的温度热响应和换热量,分析了桩与周围土体的温度随时间变化规律;比较了换热流体流量对能源桩换热量的影响。研究结果表明:制冷工况下,相变能源桩在饱和砂土中的热传递主要沿径向,在热交换过程中对于桩周土体的温度影响范围约为2倍桩径。换热流体流量增大,进出口温差减小,而热量增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔宏志
邹金平
包小华
亓学栋
齐贺
关键词 相变材料能源桩制冷实验温度热响应换热性能    
Abstract:Phase change materials which absorb large amounts of heat can be used as backfill material around heat transfer piles to improve the heat transfer efficiency and reduce the underground space required by the heat transfer piles. This paper describes a scale model test of a 0.2 m diameter and 1.5 m long concrete phase-change energy storage pile. The pile was buried in saturated sand in a 2.45 m×2.45 m×2 m box. The heat transfer fluid temperature was kept constant by a temperature controller. The three tests used flow rates of 0.15, 0.30 and 0.45 m3/h. Each case included three cooling-heating cycles. The tests measured the thermal response and the heat transfer rates to the phase change energy pile including the pile-soil temperature differences for various flow rates and the influence of the flow rate and the flow temperatures on the heat transfer capacity of the phase change concrete pile. The results are compared with the heat transfer capacity of an ordinary concrete pile. Cooling test results show that the heat transfer to the phase change energy pile in the saturated sand is mainly in the radial direction with the sand temperature influenced over an area about twice the pile diameter as the heat transfer approached steady state. The temperature difference between the system inlet and outlet decreased as the heat transfer capacity of the phase change pile increased with increasing flow rate.
Key wordsphase change material    energy pile    cooling tests    temperature thermal response    heat transfer capacity
收稿日期: 2020-02-24      出版日期: 2020-07-04
引用本文:   
崔宏志, 邹金平, 包小华, 亓学栋, 齐贺. 制冷工况相变能源桩热交换规律[J]. 清华大学学报(自然科学版), 2020, 60(9): 715-725.
CUI Hongzhi, ZOU Jinping, BAO Xiaohua, QI Xuedong, QI He. Heat exchange behavior of the phase change energy pile under cooling condition. Journal of Tsinghua University(Science and Technology), 2020, 60(9): 715-725.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.26.016  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I9/715
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] GASHTI E H N, UOTINEN V M, KUJALA K. Numerical modelling of thermal regimes in steel energy pile foundations:A case study[J]. Energy and Buildings, 2014, 69:165-174.
[2] ZARRELLA A, DE CARLI M, GALGARO A. Thermal performance of two types of energy foundation pile:Helical pipe and triple U-tube[J]. Applied Thermal Engineering, 2013, 61(2):301-310.
[3] BOZIS D, PAPAKOSTAS K, KYRIAKIS N. On the evaluation of design parameters effects on the heat transfer efficiency of energy piles[J]. Energy and Buildings, 2011, 43(4):1020-1029.
[4] YANG W B, LU P F, CHEN Y P. Laboratory investigations of the thermal performance of an energy pile with spiral coil ground heat exchanger[J]. Energy and Buildings, 2016, 128:491-502.
[5] WANG D Q, LU L, CUI P. A novel composite-medium solution for pile geothermal heat exchangers with spiral coils[J]. International Journal of Heat and Mass Transfer, 2016, 93:760-769.
[6] 郭红仙, 李翔宇, 程晓辉. 能源桩热响应测试的模拟及适用性评价[J]. 清华大学学报(自然科学版), 2015, 55(1):14-20, 26. GUO H X, LI X Y, CHENG X H. Simulation and applicability of thermal response tests in energy piles[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(1):14-20, 26. (in Chinese)
[7] LALOUI L, NUTH M, VULLIET L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8):763-781.
[8] YOU S, CHENG X H, GUO H X, et al. Experimental study on structural response of CFG energy piles[J]. Applied Thermal Engineering, 2016, 96:640-651.
[9] AMATYA B L, SOGA K, BOURNE-WEBB P J, et al. Thermo-mechanical behaviour of energy piles[J]. Géotechnique, 2012, 62(6):503-519.
[10] 孔纲强. 能量桩换热管新型埋管方式技术比较分析[J]. 建筑节能, 2014, 42(12):104-108. KONG G Q. Comparative analysis on heat exchange tube in energy pile with various embedded manners[J]. Building Energy Efficiency, 2014, 42(12):104-108. (in Chinese)
[11] NG C W W, GUNAWAN A, SHI C, et al. Centrifuge modelling of displacement and replacement energy piles constructed in saturated sand:A comparative study[J]. Géotechnique Letters, 2016, 6(1):34-38.
[12] STEWART M A, MCCARTNEY J S. Centrifuge modeling of soil-structure interaction in energy foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(4):04013044.
[13] 刘汉龙, 王成龙, 孔纲强, 等. U型、W型和螺旋型埋管形式能量桩热力学特性对比模型试验[J]. 岩土力学, 2016, 37(S1):441-447. LIU H L, WANG C L, KONG G Q, et al. Comparative model test on thermomechanical characteristics of energy pile with U-shaped, W-shape and spiral-shape[J]. Rock and Soil Mechanics, 2016, 37(S1):441-447. (in Chinese)
[14] 崔宏志, 李宇博, 包小华, 等. 饱和砂土地基相变桩的热力学特性试验研究[J]. 防灾减灾工程学报, 2019, 39(4):564-571. CUI H Z, LI Y B, BAO X H, et al. Investigation on Thermo-mechanical characteristics of phase change pile in saturated sand foundation by model tests[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(4):564-571. (in Chinese)
[15] 崔宏志, 邹金平, 李宇博, 等. 饱和砂土地基中相变能源桩的热响应研究[C]//中国土木工程学会2019年学术年会论文集. 上海, 中国:中国土木工程学会, 2019:32-44. CUI H Z, ZOU J P, LI Y B, et al. Thermal response of phase change energy piles in saturated sand soil[C]//Proceedings of China Civil Engineering Society Academic Annual Meeting. Shanghai, China:China Civil Engineering Society, 2019:32-44. (in Chinese)
[16] BAO X H, LI Y B, FENG T J, et al. Investigation on thermo-mechanical behavior of reinforced concrete energy pile with large cross-section in saturated sandy soil by model experiments[J]. Underground Space, 2019, DOI:10.1016/j.undsp.2019.03.009.
[17] ESLAMI-NEJAD P, BERNIER M. A preliminary assessment on the use of phase change materials around geothermal boreholes[M]. Atlanta:ASHRAE Transactions, 2013.
[18] DEHDEZI P K, HALL M R, DAWSON A R. Enhancement of soil thermo-physical properties using microencapsulated phase change materials for ground source heat pump applications[J]. Applied Mechanics and Materials, 2011(110-116):1191-1198.
[19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 自密实混凝土应用技术规程:JGJ/T 283-2012[S]. 北京:中国建筑工业出版社, 2012. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. Technical specification for application of self-compacting concrete:JGJ/T 283-2012[S]. Beijing:China Architecture & Building Press, 2012. (in Chinese)
[1] 刘梓标, 林俊江, 李和鑫, 黄天娇, 徐文彬, 庄依杰. 考虑电池产热的多孔介质复合相变材料的传热性能[J]. 清华大学学报(自然科学版), 2022, 62(6): 1037-1043.
[2] 崔宏志, 黎海星, 包小华, 亓学栋, 史嘉鑫, 肖雄. 非饱和黏土地层中相变能源桩热性能测试[J]. 清华大学学报(自然科学版), 2022, 62(5): 881-890.
[3] 杨卫波, 严超逸, 张来军, 汪峰. 渗流作用下能源桩的换热性能及热-力耦合特性[J]. 清华大学学报(自然科学版), 2022, 62(5): 891-899.
[4] 郭红仙,李翔宇,程晓辉. 能源桩热响应测试的模拟及适用性评价[J]. 清华大学学报(自然科学版), 2015, 55(1): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn