流化床-化学气相沉积法制备金属涂层包覆燃料颗粒

杨旭, 程心雨, 刘荣正, 刘兵, 邵友林, 刘马林

清华大学学报(自然科学版) ›› 2021, Vol. 61 ›› Issue (4) : 361-366.

PDF(10765 KB)
PDF(10765 KB)
清华大学学报(自然科学版) ›› 2021, Vol. 61 ›› Issue (4) : 361-366. DOI: 10.16511/j.cnki.qhdxxb.2021.25.024
论文

流化床-化学气相沉积法制备金属涂层包覆燃料颗粒

  • 杨旭, 程心雨, 刘荣正, 刘兵, 邵友林, 刘马林
作者信息 +

Preparation of metal coated fuel particles using the fluidized bed-chemical vapor deposition method

  • YANG Xu, CHENG Xinyu, LIU Rongzheng, LIU Bing, SHAO Youlin, LIU Malin
Author information +
文章历史 +

摘要

含有Nb、Zr、W等金属包覆层的包覆型燃料颗粒是一种新型的燃料元件形式,在核工业中有重要应用。该文利用流化床-化学气相沉积(FB-CVD)法,制备得到了含有金属包覆层的新型包覆颗粒,研究了热态输运与冷态输运2种方式对金属卤化物前驱体的载带,最终成功制备得到了纯相金属Nb与金属Zr包覆层。实验结果表明,金属包覆层可有效提升包覆颗粒整体的力学性能。该文还研究了沉积温度、前驱体输运、包覆层氧化等不同因素对沉积速率的影响。结果表明: CVD制备的金属包覆层可有效提升包覆颗粒整体的压碎强度,但抗氧化性较差,不适用于直接在氧化环境下制备与使用,可作为包覆颗粒的中间涂层。

Abstract

Fuel particles are coated with metals such as Nb, Zr, or W for advanced nuclear industry fuels. Coated particles with Nb and Zr coatings were fabricated using fluidized bed-chemical vapor deposition (FB-CVD) with investigations of the thermal transport characteristics of the precursors. The results showed that the metal coating improves the mechanical properties of the coated particles. The investigation studied the effects of the deposition temperature, precursor transport and oxidation on the metal deposition rate. The metal coating layer enhances the crushing strength, but has poor oxidation resistance, so it cannot be used in an oxidizing environment.

关键词

包覆颗粒 / 流化床-化学气相沉积(FB-CVD) / 铌涂层 / 锆涂层

Key words

coated particle / FB-CVD / Nb coating / Zr coating

引用本文

导出引用
杨旭, 程心雨, 刘荣正, 刘兵, 邵友林, 刘马林. 流化床-化学气相沉积法制备金属涂层包覆燃料颗粒[J]. 清华大学学报(自然科学版). 2021, 61(4): 361-366 https://doi.org/10.16511/j.cnki.qhdxxb.2021.25.024
YANG Xu, CHENG Xinyu, LIU Rongzheng, LIU Bing, SHAO Youlin, LIU Malin. Preparation of metal coated fuel particles using the fluidized bed-chemical vapor deposition method[J]. Journal of Tsinghua University(Science and Technology). 2021, 61(4): 361-366 https://doi.org/10.16511/j.cnki.qhdxxb.2021.25.024

参考文献

[1] VERFONDERN K, NABIELEK H, KENDALL J M. Coated particle fuel for high temperature gas cooled reactors[J]. Nuclear Engineering and Technology, 2007, 39(5):603-616.
[2] DEMKOWICZ P A, LIU B, HUNN J D. Coated particle fuel:Historical perspectives and current progress[J]. Journal of Nuclear Materials, 2019, 515:434-450.
[3] TERRANI K A, KIGGANS J O, KATOH Y, et al. Fabrication and characterization of fully ceramic microencapsulated fuels[J]. Journal of Nuclear Materials, 2012, 426(1-3):268-276.
[4] MALHERBE J B. Diffusion of fission products and radiation damage in SiC[J]. Journal of Physics D:Applied Physics, 2013, 46(47):473001.
[5] SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling[J]. Journal of Nuclear Materials, 2007, 371(1-3):329-377.
[6] LIU R Z, LIU M L, WANG Z L, et al. Preparation of fine grained SiC layer by fluidized bed chemical vapor deposition with pulsed propylene[J]. Journal of the American Ceramic Society, 2016, 99(6):1870-1873.
[7] YANG X, ZHANG F, GUO M S, et al. Preparation of SiC layer with sub-micro grain structure in TRISO particles by spouted bed CVD[J]. Journal of the European Ceramic Society, 2019, 39(9):2839-2845.
[8] TUCKER D S, BARNES M W, HONE L, et al. High density, uniformly distributed W/UO2 for use in nuclear thermal propulsion[J]. Journal of Nuclear Materials, 2017, 486:246-249.
[9] LIU Q M, ZHANG L T, CHENG L F. Low pressure chemical vapor deposition of niobium coatings on graphite[J]. Vacuum, 2010, 85(2):332-337.
[10] LIU Q M, ZHANG L T, CHENG L F, et al. Low pressure chemical vapor deposition of niobium coating on silicon carbide[J]. Applied Surface Science, 2009, 255(20):8611-8615.
[11] LIU R Z, LIU M L, CHANG J X. Experimental phase diagram of SiC in CH3SiCl3-Ar-H2 system produced by fluidized bed chemical vapor deposition and its nuclear applications[J]. Journal of Materials Research, 2016, 31(17):2695-2705.
[12] LIU M L, LIU R Z, LIU B, et al. Preparation of the coated nuclear fuel particle using the fluidized bed-chemical vapor deposition (FB-CVD) method[J]. Procedia Engineering, 2015, 102:1890-1895.
[13] KOBYAKOV V P. Chemical vapor deposition of niobium in the NbCl5-H2-O2 system[J]. Inorganic Materials, 2002, 38(9):895-899.
[14] LIAN Y Y, LIU X, XU Z Y, et al. Preparation and properties of CVD-W coated W/Cu FGM mock-ups[J]. Fusion Engineering and Design, 2013, 88(9-10):1694-1698.
[15] 刘廷伟, 张良, 潘小强, 等. 影响NbCl5流量的因素及NbCl5流量与涂铌质量的关系研究[J]. 核动力工程, 2012, 33(S2):144-148. LIU T W, ZHANG L, PAN X Q, et al. Research on factors influencing flux of NbCl5 and relations between flux of NbCl5 and quality of spreading niobium[J]. Nuclear Power Engineering, 2012, 33(S2):144-148. (in Chinese)
[16] 潘小强, 杨静, 张良, 等. 核燃料颗粒化学气相沉积包覆铌层的热力学分析[J]. 核动力工程, 2013, 34(5):61-64. PAN X Q, YANG J, ZHANG L, et al. Thermodynamic analysis of chemical vapor depositing Nb coating on fuel particles[J]. Nuclear Power Engineering, 2013, 34(5):61-64. (in Chinese)

基金

刘马林,副教授,E-mail:liumalin@tsinghua.edu.cn

PDF(10765 KB)

Accesses

Citation

Detail

段落导航
相关文章

/