基于BIM和数据驱动的智能运维管理方法

胡振中, 冷烁, 袁爽

清华大学学报(自然科学版) ›› 2022, Vol. 62 ›› Issue (2) : 199-207.

PDF(5632 KB)
PDF(5632 KB)
清华大学学报(自然科学版) ›› 2022, Vol. 62 ›› Issue (2) : 199-207. DOI: 10.16511/j.cnki.qhdxxb.2022.22.003
专题:建设管理

基于BIM和数据驱动的智能运维管理方法

  • 胡振中1, 冷烁2, 袁爽2
作者信息 +

BIM-based, data-driven method for intelligent operation and maintenance

  • HU Zhenzhong1, LENG Shuo2, YUAN Shuang2
Author information +
文章历史 +

摘要

建筑信息模型(BIM)的普及提升了建筑运维管理的效率。然而,基于BIM的智能运维仍在数据获取、管理与分析方面面临挑战。该文结合BIM和数据驱动技术,研究了智能运维管理的方法,包括:通过机电设备逻辑关系的自动生成,实现对运维BIM信息的扩充增强;通过提出数据立方模型,实现基于BIM的动态运维信息管理;以及结合聚类、频繁模式挖掘与神经网络等多种机器学习方法,实现对上述运维数据的挖掘分析,辅助智能运维决策。该研究成果有效地减少了运维人员工作负担、提高了运维数据价值,有助于提升运维管理智能化水平。

Abstract

Building information models (BIM) provide improved building operation and maintenance (O&M) efficiencies. However, BIM-based intelligent O&M still faces challenges related to data acquisition, integration and analysis. This paper combines BIM and data-driven techniques to develop a solution for intelligent O&M. This approach includes a method to identify upstream and downstream relationships among mechanical, electrical and plumbing (MEP) facilities to supplement the O&M information in BIM. A data cube model is then used to integrate the BIM and building information. Multiple data mining methods including clustering, frequent pattern discovery and neural networks are then used to analyze the O&M data and assist intelligent decision-making. This method reduces the O&M personnel workload, increases the O&M data value, and improves the intelligence level of the O&M management.

关键词

运维管理 / 建筑信息模型(BIM) / 数据驱动 / 智能建筑 / 数据挖掘

Key words

operation and maintenance management / building information model (BIM) / data-driven / intelligent buildings / data mining

引用本文

导出引用
胡振中, 冷烁, 袁爽. 基于BIM和数据驱动的智能运维管理方法[J]. 清华大学学报(自然科学版). 2022, 62(2): 199-207 https://doi.org/10.16511/j.cnki.qhdxxb.2022.22.003
HU Zhenzhong, LENG Shuo, YUAN Shuang. BIM-based, data-driven method for intelligent operation and maintenance[J]. Journal of Tsinghua University(Science and Technology). 2022, 62(2): 199-207 https://doi.org/10.16511/j.cnki.qhdxxb.2022.22.003

参考文献

[1] PAN Y J, LIU X G, CAI D G, et al. Research on correlation of railway bridge BIM model and full life cycle information oriented to operation and maintenance[J]. China Railway, 2020(5):73-80. (in Chinese)潘永杰, 刘晓光, 蔡德钩, 等. 面向运维的铁路桥梁BIM模型及全生命周期信息关联研究[J]. 中国铁路, 2020(5):73-80.
[2] LI Q, XU G Q, WEI H M. Research on the operations management system of utility tunnel based on BIM[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(2):287-292. (in Chinese)李芊, 许高强, 韦海民. 基于BIM的综合管廊运维管理系统研究[J]. 地下空间与工程学报, 2018, 14(2):287-292.
[3] YIN X F, LIU H X, CHEN Y, et al. A BIM-based framework for operation and maintenance of utility tunnels[J]. Tunnelling and Underground Space Technology, 2020, 97:103252.
[4] HU Z Z, PENG Y, TIAN P L. A review for researches and applications of BIM-based operation and maintenance management[J]. Journal of Graphics, 2015, 36(5):802-810. (in Chinese)胡振中, 彭阳, 田佩龙. 基于BIM的运维管理研究与应用综述[J]. 图学学报, 2015, 36(5):802-810.
[5] GAO X H, PISHDAD-BOZORGI P. BIM-enabled facilities operation and maintenance:A review[J]. Advanced Engineering Informatics, 2019, 39:227-247.
[6] ZHANG Y. Research overview on BIM operation and maintenance management in China[J]. Urbanism and Architecture, 2020, 17(30):191-193. (in Chinese)张阳. 基于国内BIM运维管理研究综述[J]. 城市建筑, 2020, 17(30):191-193.
[7] DANIOTTI B, PAVAN A, SPAGNOLO S L, et al. Benefits and challenges using BIM for operation and maintenance[M]//DANIOTTI B, PAVAN A, SPAGNOLO S L, et al. BIM-based collaborative building process management. Cham, Switzerland:Springer, 2020:167-181.
[8] AHMED S. Barriers to implementation of building information modeling (BIM) to the construction industry:A review[J]. Journal of Civil Engineering and Construction, 2018, 7(2):107-113.
[9] LIU S J, XIE B Z, TIVENDAL L, et al. Critical barriers to BIM implementation in the AEC industry[J]. International Journal of Marketing Studies, 2015, 7(6):162-171.
[10] CAO H. Study on BIM delivery standard in Jiangxi Province[D]. Nanchang:Nanchang University, 2019. (in Chinese)曹辉. 江西省BIM交付标准研究[D]. 南昌:南昌大学, 2019.
[11] CAVKA H B, STAUB-FRENCH S, POIRIER E A. Developing owner information requirements for BIM-enabled project delivery and asset management[J]. Automation in Construction, 2017, 83:169-183.
[12] HU Z Z, TIAN P L, LI S W, et al. BIM-based integrated delivery technologies for intelligent MEP management in the operation and maintenance phase[J]. Advances in Engineering Software, 2018, 115:1-16.
[13] XIAO Y Q, LI S W, HU Z Z. Automatically generating a MEP logic chain from building information models with identification rules[J]. Applied Sciences, 2019, 9(11):2204.
[14] TANG S, SHELDEN D R, EASTMAN C M, et al. A review of building information modeling (BIM) and the Internet of things (IoT) devices integration:Present status and future trends[J]. Automation in Construction, 2019, 101:127-139.
[15] SOORIYARACHCHI M P, KARUNASENA G. Information technology usage in building operation & maintenance management[C]//15th International Research Conference on Management and Finance (IRCMF). Colombo, Sri Lanka, 2020:9-18.
[16] YUAN S, HU Z Z, LIN J R, et al. A framework for the automatic integration and diagnosis of building energy consumption data[J]. Sensors, 2021, 21(4):1395.
[17] LIN J R, HU Z Z, LI J L, et al. Understanding on-site inspection of construction projects based on keyword extraction and topic modeling[J]. IEEE Access, 2020, 8:198503-198517.
[18] DAVE B, BUDA A, NURMINEN A, et al. A framework for integrating BIM and IoT through open standards[J]. Automation in Construction, 2018, 95:35-45.
[19] CHENG J C P, CHEN W W, CHEN K Y, et al. Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms[J]. Automation in Construction, 2020, 112:103087.
[20] CHANG K M, DZENG R J, WU Y J. An automated IoT visualization BIM platform for decision support in facilities management[J]. Applied Sciences, 2018, 8(7):1086.
[21] LENG S, HU Z Z. A review of BIM-based artificial intelligence methods[J]. Journal of Graphics, 2018, 39(5):797-805. (in Chinese)冷烁, 胡振中. 基于BIM的人工智能方法综述[J]. 图学学报, 2018, 39(5):797-805.
[22] CHENG B Q, LI J W, TAM V W Y, et al. A BIM-LCA approach for estimating the greenhouse gas emissions of large-scale public buildings:A case study[J]. Sustainability, 2020, 12(2):685.
[23] ZHANG X F. Research on building BIM energy consumption prediction algorithm based on wavelet neural network[J]. Machine Tool & Hydraulics, 2018, 46(24):42-47, 93.
[24] PENG Y, LI S W, HU Z Z. A self-learning dynamic path planning method for evacuation in large public buildings based on neural networks[J]. Neurocomputing, 2019, 365:71-85.
[25] PAN Y, ZHANG L M. A BIM-data mining integrated digital twin framework for advanced project management[J]. Automation in Construction, 2021, 124:103564.
[26] ZHU L J, MA B X, ZHAO X Q. Clustering validity analysis based on silhouette coefficient[J]. Journal of Computer Applications, 2010, 30(S2):139-141, 198. (in Chinese)朱连江, 马炳先, 赵学泉. 基于轮廓系数的聚类有效性分析[J]. 计算机应用, 2010, 30(S2):139-141, 198.
[27] AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules in large databases[C]//Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco, USA:Morgan Kaufmann Publishers, 1994:487-499.
[28] DENG M, MENASSA C C, KAMAT V R. From BIM to digital twins:A systematic review of the evolution of intelligent building representations in the AEC-FM industry[J]. Journal of Information Technology in Construction, 2021, 26:58-83.

基金

国家自然科学基金项目(51778336);深圳市科技研发基金项目(WDZC20200819174646001)

PDF(5632 KB)

Accesses

Citation

Detail

段落导航
相关文章

/