Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (4): 634-654    DOI: 10.16511/j.cnki.qhdxxb.2022.25.043
  综述 本期目录 | 过刊浏览 | 高级检索 |
二氧化碳地质封存与增产油/气/热利用技术中关键热质传递问题研究进展
胥蕊娜, 吉天成, 陆韬杰, 姜培学
清华大学 能源与动力工程系, 热科学与动力工程教育部重点实验室, 二氧化碳资源利用与减排技术北京市重点实验室, 北京 100084
Research progress on heat and mass transfer in carbon geological storage and enhanced oil/gas/geothermal recovery technology
XU Ruina, JI Tiancheng, LU Taojie, JIANG Peixue
Key Laboratory for CO2 Utilization and Reduction Technology of Beijing, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(30390 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 碳捕集、利用与封存技术(carbon capture,utilization and storage,CCUS)是指将CO2从能源利用、工业生产或大气中分离出来,经过提纯运送到可利用或封存场地,以实现被捕集的CO2与大气长期分离的技术。联合国政府间气候变化专门委员会(IPCC)近期在报告中指出: CCUS技术是碳减排与碳中和的“foundation”技术。在我国碳达峰碳中和的“双碳”目标大背景下,CCUS技术被认为是我国实现碳中和目标不可或缺的关键性技术之一。该文对国际、国内主要研究团队和作者研究团队近年来在CO2地质封存、增产致密油/页岩气/深层地热开采过程中的关键热质传递问题研究进行了综述,通过理论分析,利用分子动力学、格子Boltzmann、计算流体力学等模拟方法,和微观孔隙尺度可视化实验、岩心尺度核磁共振实验、超临界压力流体对流换热实验等实验手段,从不同尺度阐述了储层条件下超临界CO2在微纳多孔结构中多相多组分流动与热质传递机理,分析了矿物反应、降压析出、流体变物性、尺度效应等对CO2地质封存和驱油、驱气、采热过程中的影响规律,从而为CO2地质封存和利用的应用提供理论和技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胥蕊娜
吉天成
陆韬杰
姜培学
关键词 CO2地质封存与利用孔隙尺度岩心尺度储层尺度    
Abstract:Carbon capture, utilization and storage (CCUS) refers to the separation of CO2 from energy utilization systems, industrial production or the atmosphere followed by purification and transport to facilities using CO2 or to storage sites to achieve long-term separation of the CO2 from the atmosphere. The Intergovernmental Panel on Climate Change (IPCC) recently stated that CCUS systems are a "foundation" technology for carbon emission reduction and carbon neutrality. CCUS technologies are indispensable key technologies in China's "two-carbon" goal for a carbon neutral China. This paper reviews the key heat and mass transfer issues for carbon dioxide geological storage, CO2 enhanced tight oil/shale gas/deep geothermal energy recovery in recent years by major international and domestic research groups including the authors' research group. These studies have used theoretical analyses, simulation methods including molecular dynamics, lattice Boltzmann, and computational fluid dynamics, as well as experimental methods including pore-scale visualization experiments, core-scale nuclear magnetic resonance investigations, and supercritical pressure fluid convection heat transfer investigations. These studies have analyzed the multiphase, multicomponent flow and heat and mass transfer mechanisms of supercritical CO2 in micro-nano porous structures for reservoir conditions at various scales. The influences of mineral reaction, CO2 exsolution, fluid physical properties, and scale effects on the CO2 geological storage, oil displacement, gas displacement, and heat recovery have been analyzed to provide theoretical and technical support for CO2 geological storage and utilization.
Key wordsCO2 geological storage and utilization    pore-scale    core-scale    reservoir scale
收稿日期: 2022-01-05      出版日期: 2022-04-14
基金资助:姜培学,教授,E-mail:jiangpx@tsinghua.edu.cn
引用本文:   
胥蕊娜, 吉天成, 陆韬杰, 姜培学. 二氧化碳地质封存与增产油/气/热利用技术中关键热质传递问题研究进展[J]. 清华大学学报(自然科学版), 2022, 62(4): 634-654.
XU Ruina, JI Tiancheng, LU Taojie, JIANG Peixue. Research progress on heat and mass transfer in carbon geological storage and enhanced oil/gas/geothermal recovery technology. Journal of Tsinghua University(Science and Technology), 2022, 62(4): 634-654.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.043  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I4/634
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] EIKEN O, RINGROSE P, HERMANRUD C, et al. Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit [J]. Energy Procedia, 2011, 4: 5541-5548.
[2] RINGROSE P S. The CCS hub in Norway: Some insights from 22 years of saline aquifer storage [J]. Energy Procedia, 2018, 146: 166-172.
[3] BOURNE S, CROUCH S, SMITH M. A risk-based framework for measurement, monitoring and verification of the Quest CCS Project, Alberta, Canada [J]. International Journal of Greenhouse Gas Control, 2014, 26: 109-126.
[4] LI X C, LI Q, BAI B, et al. The geomechanics of Shenhua carbon dioxide capture and storage (CCS) demonstration project in Ordos Basin, China [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(6): 948-966.
[5] JIANG P X, LI X L, XU R N, et al. Thermal modeling of CO2 in the injection well and reservoir at the Ordos CCS demonstration project, China [J]. International Journal of Greenhouse Gas Control, 2014, 23: 135-146.
[6] PASQUETTO S, PATRONE L. Comportamento della materia allo stato gassoso [J]. Chimica Fisica, 1994, 2: 205-230.
[7] BAUMANN G, HENNINGES J, DE LUCIA M. Monitoring of saturation changes and salt precipitation during CO2 injection using pulsed neutron-gamma logging at the Ketzin pilot site [J]. International Journal of Greenhouse Gas Control, 2014, 28: 134-146.
[8] GRUDE S, LANDRØ M, DVORKIN J. Pressure effects caused by CO2 injection in the Tubåen Fm., the Snøhvit field [J]. International Journal of Greenhouse Gas Control, 2014, 27: 178-187.
[9] TALMAN S, SHOKRI A R, CHALATURNYK R, et al. Salt precipitation at an active CO2 injection site [M]//WU Y, CARROLL J J, HAO M Q, et al. Gas Injection into Geological Formations and Related Topics. Beverly: Scrivener Publishing, 2020: 183-199.
[10] 郭会荣, 陈颖, 吕万军, 等. 二氧化碳注入地下咸水层析盐现象研究进展 [J]. 地质科技情报, 2013, 32(6): 144-149. GUO H R, CHEN Y, LÜ W J, et al. Advance in salt precipitation during the injection of CO2 into saline aquifers [J]. Geological Science and Technology Information, 2013, 32(6): 144-149. (in Chinese)
[11] WHITE J A, CHIARAMONTE L, EZZEDINE S, et al. Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(24): 8747-8752.
[12] VERDON J P, KENDALL J M, STORK A L, et al. Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(30): E2762-E2771.
[13] IEAGHG. CO2 migration in the overburden [R]. IEAGHG Technical Report, 2017.
[14] 何堤. 碳封存条件下盐析机理及对多相流动影响规律研究 [D]. 北京: 清华大学, 2020.HE D. Research on the mechanism of salt precipitation during geological carbon sequestration and its effect on multiphase flow [D]. Beijing: Tsinghua University, 2020.
[15] OTT H, ROELS S M, DE KLOE K. Salt precipitation due to supercritical gas injection: I. Capillary-driven flow in unimodal sandstone [J]. International Journal of Greenhouse Gas Control, 2015, 43: 247-255.
[16] ZEIDOUNI M, POOLADI-DARVISH M, KEITH D. Analytical solution to evaluate salt precipitation during CO2 injection in saline aquifers [J]. International Journal of Greenhouse Gas Control, 2009, 3(5): 600-611.
[17] MD YUSOF M A, IBRAHIM M A, MOHAMED M A, et al. Predictive modelling of CO2 injectivity impairment due to salt precipitation and fines migration during sequestration [C]// International Petroleum Technology Conference. Virtual, 2021.
[18] MULLER N, QI R, MACKIE E, et al. CO2 injection impairment due to halite precipitation [J]. Energy Procedia, 2009, 1(1): 3507-3514.
[19] WANG Y, MACKIE E, ROHAN J, et al. Experimental study on halite precipitation during CO2 sequestration [C]// International Symposium of the Society of Core Analysts. Noordwijk, The Netherlands: The Society of Core Analysts, 2009.
[20] OTT H, DE KLOE K, VAN BAKEL M, et al. Core-flood experiment for transport of reactive fluids in rocks [J]. Review of Scientific Instruments, 2012, 83(8): 084501.
[21] OTT H, DE KLOE K, MARCELIS F, et al. Injection of supercritical CO2 in brine saturated sandstone: Pattern formation during salt precipitation [J]. Energy Procedia, 2011, 4: 4425-4432.
[22] TANG Y, YANG R Z, DU Z M, et al. Experimental study of formation damage caused by complete water vaporization and salt precipitation in sandstone reservoirs [J]. Transport in Porous Media, 2015, 107(1): 205-218.
[23] MD YUSOF M A, IBRAHIM M A, IDRESS M, et al. Effects of CO2/rock/formation brine parameters on CO2 injectivity for sequestration [J]. SPE Journal, 2021, 26(3): 1455-1468.
[24] KIM M, SELL A, SINTON D. Aquifer-on-a-chip: Understanding pore-scale salt precipitation dynamics during CO2 sequestration [J]. Lab on a Chip, 2013, 13(13): 2508-2518.
[25] MIRI R, VAN NOORT R, AAGAARD P, et al. New insights on the physics of salt precipitation during injection of CO2 into saline aquifers [J]. International Journal of Greenhouse Gas Control, 2015, 43: 10-21.
[26] NOORAIEPOUR M, FAZELI H, MIRI R, et al. Effect of CO2 phase states and flow rate on salt precipitation in shale caprocks—A microfluidic study [J]. Environmental Science & Technology, 2018, 52(10): 6050-6060.
[27] HE D, JIANG P X, XU R N. Pore-scale experimental investigation of the effect of supercritical CO2 injection rate and surface wettability on salt precipitation [J]. Environmental Science & Technology, 2019, 53(24): 14744-14751.
[28] 马瑾, 胥蕊娜, 罗庶, 等. 超临界压力CO2在深部咸水层中运移规律研究 [J]. 工程热物理学报, 2012, 33(11): 1971-1975. MA J, XU R N, LUO S, et al. Core-scale experimental study on supercritical-pressure CO2 migration mechanism during CO2 geological storage in deep saline aquifers [J]. Journal of Engineering Thermophysics, 2012, 33(11): 1971-1975. (in Chinese)
[29] CANAL J, DELGADO J, FALCÓN I, et al. Injection of CO2-saturated water through a siliceous sandstone plug from the hontomin test site (Spain): Experiment and modeling [J]. Environmental Science & Technology, 2013, 47(1): 159-167.
[30] XU R N, LI R, MA J, et al. Effect of mineral dissolution/precipitation and CO2 exsolution on CO2 transport in geological carbon storage [J]. Accounts of Chemical Research, 2017, 50(9): 2056-2066.
[31] SUN X H, WANG Z Y, LI H Y, et al. A simple model for the prediction of mutual solubility in CO2-brine system at geological conditions [J]. Desalination, 2021, 504: 114972.
[32] 郭会荣, 陈颖, 赵锐锐. 地质封存温压条件下CO2溶解、 扩散及水岩反应实验研究 [M]. 武汉: 中国地质大学出版社, 2014. GUO H R, CHEN Y, ZHAO R R. Experimental simulation on the dissolution, diffusion, and reaction of CO2, sequestrated into saline aquifer [M]. Wuhan: China University of Geosciences Press, 2014. (in Chinese)
[33] SHAO H B, RAY J R, JUN Y S. Dissolution and precipitation of clay minerals under geologic CO2 sequestration conditions: CO2-brine-phlogopite interactions [J]. Environmental Science & Technology, 2010, 44(15): 5999-6005.
[34] IGLAUER S, PENTLAND C H, BUSCH A. CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration [J]. Water Resources Research, 2015, 51(1): 729-774.
[35] GOUZE P, LUQUOT L. X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution [J]. Journal of Contaminant Hydrology, 2011, 120-121: 45-55.
[36] ZHANG S, DEPAOLO D J. Rates of CO2 mineralization in geological carbon storage [J]. Accounts of Chemical Research, 2017, 50(9): 2075-2084.
[37] STEEFEL C I, MOLINS S, TREBOTICH D. Pore scale processes associated with subsurface CO2 injection and sequestration [J]. Reviews in Mineralogy and Geochemistry, 2013, 77(1): 259-303.
[38] ZHANG L W, WANG Y, MIAO X X, et al. Geochemistry in geologic CO2 utilization and storage: A brief review [J]. Advances in Geo-Energy Research, 2019, 3(3): 304-313.
[39] LUHMANN A J, TUTOLO B M, BAGLEY B C, et al. Permeability, porosity, and mineral surface area changes in basalt cores induced by reactive transport of CO2-rich brine [J]. Water Resources Research, 2017, 53(3): 1908-1927.
[40] PEARCE J K, DAWSON G K W, GOLAB A, et al. A combined geochemical and μCT study on the CO2 reactivity of Surat Basin reservoir and cap-rock cores: Porosity changes, mineral dissolution and fines migration [J]. International Journal of Greenhouse Gas Control, 2019, 80: 10-24.
[41] YANG Y F, LI Y W, YAO J, et al. Dynamic pore-scale dissolution by CO2-saturated brine in carbonates: Impact of homogeneous versus fractured versus vuggy pore structure [J]. Water Resources Research, 2020, 56(4): e2019WR026112.
[42] 马瑾, LAMY-CHAPPUIS B, 胥蕊娜, 等. 地质封存过程中饱和二氧化碳水溶液在岩心中矿化反应研究 [J]. 工程热物理学报, 2015, 36(3): 627-630. MA J, LAMY-CHAPPUIS B, XU R N, et al. Alteration of Calcareous sandstone due to chemical reaction with injected carbon dioxide [J]. Journal of Engineering Thermophysics, 2015, 36(3): 627-630. (in Chinese)
[43] MANCEAU J C, MA J, LI R, et al. Two-phase flow properties of a sandstone rock for the CO2/water system: Core-flooding experiments, and focus on impacts of mineralogical changes [J]. Water Resources Research, 2015, 51(4): 2885-2900.
[44] MOLINS S, SOULAINE C, PRASIANAKIS N I, et al. Simulation of mineral dissolution at the pore scale with evolving fluid-solid interfaces: Review of approaches and benchmark problem set [J]. Computational Geosciences, 2021, 25(4): 1285-1318.
[45] GHASSEMI A, PAK A. Numerical study of factors influencing relative permeabilities of two immiscible fluids flowing through porous media using lattice Boltzmann method [J]. Journal of Petroleum Science and Engineering, 2011, 77(1): 135-145.
[46] DOU Z, ZHOU Z F. Numerical study of non-uniqueness of the factors influencing relative permeability in heterogeneous porous media by lattice Boltzmann method [J]. International Journal of Heat and Fluid Flow, 2013, 42: 23-32.
[47] GAO J F, XING H L, TIAN Z W, et al. Reactive transport in porous media for CO2 sequestration: Pore scale modeling using the lattice Boltzmann method [J]. Computers & Geosciences, 2017, 98: 9-20.
[48] GAO C, XU R N, JIANG P X. Pore-scale numerical investigations of fluid flow in porous media using lattice Boltzmann method [J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2015, 25(8): 1957-1977.
[49] SOONG Y, CRANDALL D, HOWARD B H, et al. Permeability and mineral composition evolution of primary seal and reservoir rocks in geologic carbon storage conditions [J]. Environmental Engineering Science, 2018, 35(5): 391-400.
[50] DENG H, FITTS J P, CRANDALL D, et al. Alterations of fractures in carbonate rocks by CO2-acidified brines [J]. Environmental Science & Technology, 2015, 49(16): 10226-10234.
[51] WANG Y, ZHANG L W, SOONG Y, et al. From core-scale experiment to reservoir-scale modeling: A scale-up approach to investigate reaction-induced permeability evolution of CO2 storage reservoir and caprock at a U.S. CO2 storage site [J]. Computers & Geosciences, 2019, 125: 55-68.
[52] XU T F, APPS J A, PRUESS K. Mineral sequestration of carbon dioxide in a sandstone-shale system [J]. Chemical Geology, 2005, 217(3-4): 295-318.
[53] ZUO L, KREVOR S, FALTA R W, et al. An experimental study of CO2 exsolution and relative permeability measurements during CO2 saturated water depressurization [J]. Transport in Porous Media, 2012, 91(2): 459-478.
[54] PERRIN J C, FALTA R W, KREVOR S, et al. Laboratory experiments on core-scale behavior of CO2 exolved from CO2-saturated brine [J]. Energy Procedia, 2011, 4: 3210-3215.
[55] ZUO L, ZHANG C Y, FALTA R W, et al. Micromodel investigations of CO2 exsolution from carbonated water in sedimentary rocks [J]. Advances in Water Resources, 2013, 53: 188-197.
[56] ZUO L, BENSON S M. Process-dependent residual trapping of CO2 in sandstone [J]. Geophysical Research Letters, 2014, 41(8): 2820-2826.
[57] LI R, JIANG P X, HE D, et al. Experimental investigation on the behavior of supercritical CO2 during reservoir depressurization [J]. Environmental Science & Technology, 2017, 51(15): 8869-8876.
[58] XU R N, LI R, HUANG F, et al. Pore-scale visualization on a depressurization-induced CO2 exsolution [J]. Science Bulletin, 2017, 62(11): 795-803.
[59] XU R N, LI R, MA J, et al. CO2 exsolution from CO2 saturated water: Core-scale experiments and focus on impacts of pressure variations [J]. Environmental Science & Technology, 2015, 49(24): 14696-14703.
[60] REZK M G, FOROOZESH J. Study of convective-diffusive flow during CO2 sequestration in fractured heterogeneous saline aquifers [J]. Journal of Natural Gas Science and Engineering, 2019, 69: 102926.
[61] 高诚, 胥蕊娜, 姜培学. 超临界CO2在地下盐水层内弥散现象的数值模拟 [J]. 清华大学学报(自然科学版), 2015, 55(10): 1105-1109, 1116. GAO C, XU R N, JIANG P X. Numerical simulation of the dispersion of supercritical CO2 storage in saline aquifers [J]. Journal of Tsinghua University (Science and Technology), 2015, 55(10): 1105-1109, 1116. (in Chinese)
[62] LUO S, XU R N, JIANG P X. Effect of reactive surface area of minerals on mineralization trapping of CO2 in saline aquifers [J]. Petroleum Science, 2012, 9(3): 400-407.
[63] TORABI F, ASGHARI K. Effect of operating pressure, matrix permeability and connate water saturation on performance of CO2 huff-and-puff process in matrix-fracture experimental model [J]. Fuel, 2010, 89(10): 2985-2990.
[64] ABEDINI A, TORABI F. Oil recovery performance of immiscible and miscible CO2 huff-and-puff processes [J]. Energy & Fuels, 2014, 28(2): 774-784.
[65] TORABI F, QAZVINI FIROUZ A, KAVOUSI A, et al. Comparative evaluation of immiscible, near miscible and miscible CO2 huff-n-puff to enhance oil recovery from a single matrix-fracture system (experimental and simulation studies) [J]. Fuel, 2012, 93: 443-453.
[66] PU W F, WEI B, JIN F Y, et al. Experimental investigation of CO2 huff-n-puff process for enhancing oil recovery in tight reservoirs [J]. Chemical Engineering Research and Design, 2016, 111: 269-276.
[67] ZHU C F, GUO W, WANG Y P, et al. Experimental study of enhanced oil recovery by CO2 huff-n-puff in shales and tight sandstones with fractures [J]. Petroleum Science, 2021, 18(3): 852-869.
[68] LU T, LI Z M, FAN W Y, et al. CO2 huff and puff for heavy oil recovery after primary production [J]. Greenhouse Gases: Science and Technology, 2016, 6(2): 288-301.
[69] NGUYEN P, CAREY J W, VISWANATHAN H S, et al. Effectiveness of supercritical-CO2 and N2 huff and puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments [J]. Applied Energy, 2018, 230: 160-174.
[70] ZHONG J J, ABEDINI A, XU L L, et al. Nanomodel visualization of fluid injections in tight formations [J]. Nanoscale, 2018, 10(46): 21994-22002.
[71] LI L, SU Y L, SHENG J J, et al. Experimental and numerical study on CO2 sweep volume during CO2 huff-n-puff enhanced oil recovery process in shale oil reservoirs [J]. Energy & Fuels, 2019, 33(5): 4017-4032.
[72] HUANG F, XU R N, JIANG P X, et al. Pore-scale investigation of CO2/oil exsolution in CO2 huff-n-puff for enhanced oil recovery [J]. Physics of Fluids, 2020, 32(9): 092011.
[73] LU H W, HUANG F, JIANG P X, et al. Exsolution effects in CO2 huff-n-puff enhanced oil recovery: Water-Oil-CO2 three phase flow visualization and measurements by micro-PIV in micromodel [J]. International Journal of Greenhouse Gas Control, 2021, 111: 103445.
[74] COLLELL J, GALLIERO G, GOUTH F, et al. Molecular simulation and modelisation of methane/ethane mixtures adsorption onto a microporous molecular model of kerogen under typical reservoir conditions [J]. Microporous and Mesoporous Materials, 2014, 197: 194-203.
[75] LIU Y, ZHU Y M, CHEN S B, et al. Evaluation of spatial alignment of kerogen in shale using high-resolution transmission electron microscopy, raman spectroscopy, and fourier transform infrared [J]. Energy & Fuels, 2018, 32(10): 10616-10627.
[76] ZHAO T Y, LI X F, ZHAO H W, et al. Molecular simulation of adsorption and thermodynamic properties on type II kerogen: Influence of maturity and moisture content [J]. Fuel, 2017, 190: 198-207.
[77] WECK P F, KIM E, WANG Y F, et al. Model representations of kerogen structures: An insight from density functional theory calculations and spectroscopic measurements [J]. Scientific Reports, 2017, 7(1): 7068.
[78] ZHOU B, XU R N, JIANG P X. Novel molecular simulation process design of adsorption in realistic shale kerogen spherical pores [J]. Fuel, 2016, 180: 718-726.
[79] ZENG K C, JIANG P X, LUN Z M, et al. Molecular simulation of carbon dioxide and methane adsorption in shale organic nanopores [J]. Energy & Fuels, 2019, 33(3): 1785-1796.
[80] LANGMUIR I. The constitution and fundamental properties of solids and liquids. Part I. Solids [J]. Journal of the American Chemical Society, 1916, 38(11): 2221-2295.
[81] BRUNAUER S, EMMETT P H, TELLER E. Adsorption of gases in multimolecular layers [J]. Journal of the American Chemical Society, 1938, 60(2): 309-319.
[82] FREUNDLICH H M F. Over the adsorption in solution [J]. Journal of Physical Chemistry A, 1906, 57: 385-471.
[83] TOTH J. State equation of the solid-gas interface layers [J]. Acta Chimica Hungaricae, 1971, 69: 311-317.
[84] HILL T L. Theory of physical adsorption [M]// FRANKENBURG W G, KOMAREWSKY V I, RIDEAL E K. Advances in Catalysis. New York: Academic Press, 1952, 4: 211-258.
[85] SAKUROVS R, DAY S, WEIR S, et al. Application of a modified dubinin-radushkevich equation to adsorption of gases by coals under supercritical conditions [J]. Energy & Fuels, 2007, 21(2): 992-997.
[86] WANG Q Q, ZHANG D F, WANG H H, et al. Influence of CO2 exposure on high-pressure methane and CO2 adsorption on various rank coals: Implications for CO2 sequestration in coal seams [J]. Energy & Fuels, 2015, 29(6): 3785-3795.
[87] ZHOU J, JIN Z H, LUO K H. Insights into recovery of multi-component shale gas by CO2 injection: A molecular perspective [J]. Fuel, 2020, 267: 117247.
[88] ZHOU J, JIN Z H, LUO K H. The role of brine in gas adsorption and dissolution in kerogen nanopores for enhanced gas recovery and CO2 sequestration [J]. Chemical Engineering Journal, 2020, 399: 125704.
[89] JU Y, HE J, CHANG E, et al. Quantification of CH4 adsorption capacity in kerogen-rich reservoir shales: An experimental investigation and molecular dynamic simulation [J]. Energy, 2019, 170: 411-422.
[90] WU T H, ZHAO H J, TESSON S, et al. Absolute adsorption of light hydrocarbons and carbon dioxide in shale rock and isolated kerogen [J]. Fuel, 2019, 235: 855-867.
[91] CHEN J, WANG F C, LIU H, et al. Molecular mechanism of adsorption/desorption hysteresis: Dynamics of shale gas in nanopores [J]. Science China Physics, Mechanics & Astronomy, 2017, 60 (1): 014611.
[92] ZHOU S W, ZHANG D X, WANG H Y, et al. A modified BET equation to investigate supercritical methane adsorption mechanisms in shale [J]. Marine and Petroleum Geology, 2019, 105: 284-292.
[93] 周尚文, 李奇, 薛华庆, 等. 页岩容量法和重量法等温吸附实验对比研究 [J]. 化工进展, 2017, 36(5): 1690-1697. ZHOU S W, LI Q, XUE H Q, et al. Comparative study on the volumetric and gravimetric method for isothermal adsorption experiment of shale [J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1690-1697. (in Chinese)
[94] TIAN Y Y, YAN C H, JIN Z H. Characterization of methane excess and absolute adsorption in various clay nanopores from molecular simulation [J]. Scientific Reports, 2017, 7(1): 12040.
[95] CHEN M J, KANG Y L, ZHANG T S, et al. Methane adsorption behavior on shale matrix at in-situ pressure and temperature conditions: Measurement and modeling [J]. Fuel, 2018, 228: 39-49.
[96] WANG F, YAO Y B, WEN Z A, et al. Effect of water occurrences on methane adsorption capacity of coal: A comparison between bituminous coal and anthracite coal [J]. Fuel, 2020, 266: 117102.
[97] SUN X X, YAO Y B, LIU D M, et al. Investigations of CO2-water wettability of coal: NMR relaxation method [J]. International Journal of Coal Geology, 2018, 188: 38-50.
[98] RANI S, PADMANABHAN E, PRUSTY B K. Review of gas adsorption in shales for enhanced methane recovery and CO2 storage [J]. Journal of Petroleum Science and Engineering, 2019, 175: 634-643.
[99] PSARRAS P, HOLMES R, VISHAL V, et al. Methane and CO2 adsorption capacities of kerogen in the eagle ford shale from molecular simulation [J]. Accounts of Chemical Research, 2017, 50(8): 1818-1828.
[100] ZHOU J P, LIU M H, XIAN X F, et al. Measurements and modelling of CH4 and CO2 adsorption behaviors on shales: Implication for CO2 enhanced shale gas recovery [J]. Fuel, 2019, 251: 293-306.
[101] ZENG K C, LU T J, JIANG P X, et al. Methane adsorption capacity measurement in shale matrix nanopores at high pressure by low-field NMR and molecular simulation [J]. Chemical Engineering Journal, 2022, 430: 133151.
[102] LU T J, ZENG K C, JIANG P X, et al. Competitive adsorption in CO2 enhancing shale gas: Low-field NMR measurement combined with molecular simulation for selectivity and displacement efficiency model [J]. Chemical Engineering Journal, 2022, 440: 135865.
[103] XU R N, ZENG K C, ZHANG C W, et al. Assessing the feasibility and CO2 storage capacity of CO2 enhanced shale gas recovery using triple-porosity reservoir model [J]. Applied Thermal Engineering, 2017, 115: 1306-1314.
[104] ZHAO J. Experimental studies of the hydro-thermo-mechanical behaviour of joints in granite [D]. London: University of London, 1987.
[105] ZHAO J. Analytical and experimental studies of heat convection by water flow in rock fractures [C]//The 33rd U.S. Symposium on Rock Mechanics. One Petro: Santa Fe, New Mexico, 1992.
[106] ZHAO J, TSO C P. Heat transfer by water flow in rock fractures and the application to hot dry rock geothermal systems [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(6): 633-641.
[107] NEUVILLE A, TOUSSAINT R, SCHMITTBUHL J. Hydrothermal coupling in a self-affine rough fracture [J]. Physical Review E, 2010, 82(3): 036317.
[108] NEUVILLE A, TOUSSAINT R, SCHMITTBUHL J. Fracture roughness and thermal exchange: A case study at Soultz-sous-Forêts [J]. Comptes Rendus Geoscience, 2010, 342(7-8): 616-625.
[109] NEUVILLE A, TOUSSAINT R, SCHMITTBUHL J. Hydraulic transmissivity and heat exchange efficiency of open fractures: A model based on lowpass filtered apertures [J]. Geophysical Journal International, 2011, 186(3): 1064-1072.
[110] LUO F, XU R N, JIANG P X. Numerical investigation of fluid flow and heat transfer in a doublet enhanced geothermal system with CO2 as the working fluid (CO2-EGS) [J]. Energy, 2014, 64: 307-322.
[111] ZHANG L, LUO F, XU R N, et al. Heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system with local thermal non-equilibrium model [J]. Energy Procedia, 2014, 63: 7644-7650.
[112] ZHANG L, JIANG P X, WANG Z C, et al. Convective heat transfer of supercritical CO2 in a rock fracture for enhanced geothermal systems [J]. Applied Thermal Engineering, 2017, 115: 923-936.
[113] JIANG P X, ZHANG L, XU R N. Experimental study of convective heat transfer of carbon dioxide at supercritical pressures in a horizontal rock fracture and its application to enhanced geothermal systems [J]. Applied Thermal Engineering, 2017, 117: 39-49.
[114] XU R N, ZHANG L, WANG W J, et al. Core-scale investigation of convective heat transfer of supercritical pressure CO2 in hot rock fracture with various inclinations [J]. Applied Thermal Engineering, 2021, 188: 116648.
[115] JIANG P X, ZHANG F Z, XU R N. Thermodynamic analysis of a solar-enhanced geothermal hybrid power plant using CO2 as working fluid [J]. Applied Thermal Engineering, 2017, 116: 463-472.
[1] 简萌, 张明奎, 黄健兵, 罗先武. ECMO氧合器膜丝阵列多相流动数值模拟与分析[J]. 清华大学学报(自然科学版), 2023, 63(11): 1820-1832.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn