Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (4): 704-721    DOI: 10.16511/j.cnki.qhdxxb.2022.25.038
  综述 本期目录 | 过刊浏览 | 高级检索 |
气固反应动力学速率方程理论
李振山, 蔡宁生
清华大学 能源与动力工程系, 热科学与动力工程教育部重点实验室, 北京 100084
Rate equation theory for gas-solid reaction kinetics
LI Zhenshan, CAI Ningsheng
Key Laboratory of Thermal Sciences, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(16585 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 针对气固反应的跨尺度计算这一学科前沿方向,该文从介观晶粒层次提出基于第一性原理的速率方程理论,解决原有理论中无法实现尺度关联和反应/扩散相互耦合的难题,构建“原子→晶粒→颗粒”跨尺度的气固反应动力学理论模型,揭示了固体产物在表面的离散岛状生长机制,设计了高效可靠的计算和分析方法,并应用于低能耗CO2捕集中化学链燃烧的跨尺度氧化/还原反应动力学、新型热化学储热中的表界面反应现象及机理、污染物脱除技术的跨尺度计算、煤焦燃烧的数值模拟、双流化床反应器的设计与优化等技术领域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李振山
蔡宁生
关键词 气固表界面反应动力学速率方程理论反应-扩散    
Abstract:Gas-solid reactions have a very wide range of scales that significantly challenge computational models. This paper presents a first principles based rate equation theory that connects the various scales and couples the chemical reactions with the diffusion of the solid state ions. The theoretical models cross all the 'atom→grain→particle' size scales with efficient algorithms. The results show a discrete island growth mechanism of solid product on surfaces or interfaces. The rate equation theory is applied to CFD models of oxidation/reduction kinetics in chemical looping combustion, surface and interfacial phenomenon in thermal chemical energy storage, pollutant control, coal combustion and dual fluidized bed reactors.
Key wordsgas-solid surface    reaction kinetics    rate equation theory    reaction-diffusion
收稿日期: 2021-09-30      出版日期: 2022-04-14
引用本文:   
李振山, 蔡宁生. 气固反应动力学速率方程理论[J]. 清华大学学报(自然科学版), 2022, 62(4): 704-721.
LI Zhenshan, CAI Ningsheng. Rate equation theory for gas-solid reaction kinetics. Journal of Tsinghua University(Science and Technology), 2022, 62(4): 704-721.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.038  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I4/704
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 蔡宁生, 房凡, 李振山. 钙基吸收剂循环煅烧/碳酸化法捕集CO2的研究进展[J]. 中国电机工程学报, 2010, 30(26):35-43. CAI N S, FANG F, LI Z S. Research and development on cyclic calcination/carbonation reaction with Ca-based sorbents to CO2 capture from flue gases[J]. Proceedings of the CSEE, 2010, 30(26):35-43. (in Chinese)
[2] 王会, 王诗卉, 李振山, 等. 氧化还原储热技术的研究现状及进展[J]. 中国电机工程学报, 2019, 39(21):6309-6319. WANG H, WANG S H, LI Z S, et al. Research status and progress on redox thermochemical energy storage technology[J]. Proceedings of the CSEE, 2019, 39(21):6309-6319. (in Chinese)
[3] ADANEZ J, ABAD A, GARCIA-LABIANO F, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2):215-282.
[4] DAZA Y A, KENT R A, YUNG M M, et al. Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskite-type oxides[J]. Industrial & Engineering Chemistry Research, 2014, 53(14):5828-5837.
[5] DUDEK R B, LI F X. Selective hydrogen combustion as an effective approach for intensified chemical production via the chemical looping strategy[J]. Fuel Processing Technology, 2021, 218:106827.
[6] WANG I W, JI G Z, TURAP Y, et al. A short-cut chemical looping hydrogen generation system by using iron-based material from steel industry[J]. Chemical Engineering Journal, 2020, 394:124882.
[7] ZHAO X, ZHOU H, SIKARWAR V S, et al. Biomass-based chemical looping technologies:The good, the bad and the future[J]. Energy & Environmental Science, 2017, 10(9):1885-1910.
[8] LI D Y, XU R D, LI X Y, et al. Chemical looping conversion of gaseous and liquid fuels for chemical production:A review[J]. Energy & Fuels, 2020, 34(5):5381-5413.
[9] DREIZIN E L. Metal-based reactive nanomaterials[J]. Progress in Energy and Combustion Science, 2009, 35(2):141-167.
[10] XIAO L, WU S Y, LI Y R. Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions[J]. Renewable Energy, 2012, 41:1-12.
[11] 马金珠, 刘永春, 马庆鑫, 等. 大气非均相反应及其环境效应[J]. 环境化学, 2011, 30(1):97-119. MA J Z, LIU Y C, MA Q X, et al. Atmospheric heterogeneous reactions and their environmental effects[J]. Environmental Chemistry, 2011, 30(1):97-119. (in Chinese)
[12] KUBICKI J D, WATTS H D. Reaction mechanisms and solid-gas phase reactions:Theory and density functional theory simulation[J]. Reviews in Mineralogy and Geochemistry, 2018, 84(1):85-101.
[13] SZEKELY J, EVANS J W, SOHN H Y. Gas-solid reactions[M]. New York:Academic Press, 1976.
[14] 李振山, 蔡宁生. 气固反应原理[M]. 北京:科学出版社, 2020. LI Z S, CAI N S. Principle of gas-solid reaction[M]. Beijing:Science Press, 2020. (in Chinese)
[15] TAMMANN G. Über Anlauffarben von Metallen[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 1920, 111(1):78-89.
[16] PILLING N, BEDWORTH R E. The oxidation of metals at high temperatures[J]. Institute of Metals, 1923, 29:529-591.
[17] WAGNER C. Beitrag zur Theorie des Anlaufvorgangs[J]. Zeitschrift für Physikalische Chemie, 1933, 2B(1):25-41.
[18] CABRERA N, MOTT N F. Theory of the oxidation of metals[J]. Reports on Progress in Physics, 1949, 12(1):163-184.
[19] FROMHOLD A T JR, COOK E L. Kinetics of oxide film growth on metal crystals:Electron tunneling and ionic diffusion[J]. Physical Review, 1967, 158(3):600-612.
[20] WANG C B, SHEN X L, XU Y Q. Investigation on sulfation of modified Ca-based sorbent[J]. Fuel Processing Technology, 2002, 79(2):121-133.
[21] AGNIHOTRI R, CHAUK S S, MAHULI S K, et al. Mechanism of CaO reaction with H2S:Diffusion through CaS product layer[J]. Chemical Engineering Science, 1999, 54(15-16):3443-3453.
[22] SZEKELY J, EVANS J W. A structural model for gas-solid reactions with a moving boundary[J]. Chemical Engineering Science, 1970, 25(6):1091-1107.
[23] SZEKELY J, EVANS J W. A structural model for gas-solid reactions with a moving boundary-II:The effect of grain size, porosity and temperature on the reaction of porous pellets[J]. Chemical Engineering Science, 1971, 26(11):1901-1913.
[24] BHATIA S K. The effect of pore structure on the kinetics of fluid-solid reactions[D]. Philadelphia:University of Pennsylvania, 1981.
[25] LI X T, LUO Z Y, CEN K F, et al. Modeling sulfur retention in circulating fluidized bed-Application of percolation theory[J]. Progress in Natural Science, 1996(1):71-76.
[26] CHEN B W J, XU L, MAVRIKAKIS M. Computational methods in heterogeneous catalysis[J]. Chemical Reviews, 2021, 121(2):1007-1048.
[27] WANG N N, FENG Y C, GUO X. Atomistic mechanisms study of the carbonation reaction of CaO for high-temperature CO2 capture[J]. Applied Surface Science, 2020, 532:147425.
[28] ERTL G. Reactions at solid surfaces[M]. Hoboken:John Wiley & Sons, 2009.
[29] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A):A1133-A1138.
[30] MARDIROSSIAN N, HEAD-GORDON M. Thirty years of density functional theory in computational chemistry:An overview and extensive assessment of 200 density functionals[J]. Molecular Physics, 2017, 115(19):2315-2372.
[31] YUAN Y, YOU H B, RICARDEZ-SANDOVAL L. Recent advances on first-principles modeling for the design of materials in CO2 capture technologies[J]. Chinese Journal of Chemical Engineering, 2019, 27(7):1554-1565.
[32] FAN Y M, YAO J G, ZHANG Z L, et al. Pressurized calcium looping in the presence of steam in a spout-fluidized-bed reactor with DFT analysis[J]. Fuel Processing Technology, 2018, 169:24-41.
[33] LIU F, LIU J, LI Y, et al. Theoretical study of reduction mechanism of Fe2O3 by H2 during chemical looping combustion[J]. Chinese Journal of Chemical Engineering, 2021, 37:175-183. DOI:10.1016/j.cjche.2021.02.006.
[34] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16):11169-11186.
[35] CHRISTENSEN R, HANSEN H A, VEGGE T. Identifying systematic DFT errors in catalytic reactions[J]. Catalysis Science & Technology, 2015, 5(11):4946-4949.
[36] MOTAGAMWALA A H, BALL M R, DUMESIC J A. Microkinetic analysis and scaling relations for catalyst design[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9(1):413-450.
[37] BRUIX A, MARGRAF J T, ANDERSEN M, et al. First-principles-based multiscale modelling of heterogeneous catalysis[J]. Nature Catalysis, 2019, 2(8):659-670.
[38] EYRING H. The activated complex and the absolute rate of chemical reactions[J]. Chemical Reviews, 1935, 17(1):65-77.
[39] EVANS M G, POLANYI M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution[J]. Transactions of the Faraday Society, 1935, 31:875-894.
[40] LANGMUIR I. The mechanism of the catalytic action of platinum in the reactions 2CO+O2=2CO2 and 2H2+O2=2H2O[J]. Transactions of the Faraday Society, 1922, 17:621-654.
[41] GULDBERG C M, WAAGE P. Studier over affiniteten[J]. Forhandlinger:Videnskabs-Selskabet i Christiania, 1864, 6(2):35-40.
[42] LANGMUIR I. The constitution and fundamental properties of solids and liquids. Part I. Solids[J]. Journal of the American Chemical Society, 1916, 38(11):2221-2295.
[43] DUMESIC J A, RUDD D F, APARICIO L M, et al. The microkinetics of heterogeneous catalysis[M]. Washington:American Chemical Society, 1993.
[44] STOLTZE P. Microkinetic simulation of catalytic reactions[J]. Progress in Surface Science, 2000, 65(3-4):65-150.
[45] MAO Z T, CAMPBELL C T. Kinetic isotope effects:Interpretation and prediction using degrees of rate control[J]. ACS Catalysis, 2020, 10(7):4181-4192.
[46] MOTAGAMWALA A H, DUMESIC J A. Microkinetic modeling:A tool for rational catalyst design[J]. Chemical Reviews, 2021, 121(2):1049-1076.
[47] LI Z S. First-principles-based microkinetic rate equation theory for oxygen carrier reduction in chemical looping[J]. Chemical Engineering Science, 2022, 247:117042.
[48] LIU L, WANG H, CAI J Z, et al. First-principles-based multiscale modelling of heterogeneous CoO oxidation kinetics in high-temperature thermochemical energy storage[J]. Fuel Processing Technology, 2022, 228:107164.
[49] CORTRIGHT R D, DUMESIC J A. Kinetics of heterogeneous catalytic reactions:Analysis of reaction schemes[J]. Advances in Catalysis, 2001, 46:161-264.
[50] DUMESIC J A. Reply to finding the rate-determining step in a mechanism:Comparing DeDonder relations with the "degree of rate control"[J]. Journal of Catalysis, 2001, 204(2):525-529.
[51] CAMPBELL C T. Future directions and industrial perspectives micro- and macro-kinetics:Their relationship in heterogeneous catalysis[J]. Topics in Catalysis, 1994, 1(3):353-366.
[52] LI Z S, FANG F, TANG X Y, et al. Effect of temperature on the carbonation reaction of CaO with CO2[J]. Energy & Fuels, 2012, 26(4):2473-2482.
[53] CRIADO Y A, ARIAS B, ABANADES J C. Effect of the carbonation temperature on the CO2 carrying capacity of CaO[J]. Industrial & Engineering Chemistry Research, 2018, 57(37):12595-12599.
[54] LI Y, LI Z S, WANG H, et al. CaO carbonation kinetics determined using micro-fluidized bed thermogravimetric analysis[J]. Fuel, 2020, 264:116823.
[55] FANG F, LI Z S, CAI N S, et al. AFM investigation of solid product layers of MgSO4 generated on MgO surfaces for the reaction of MgO with SO2 and O2[J]. Chemical Engineering Science, 2011, 66(6):1142-1149.
[56] TANG X Y, LI Z S, FANG F, et al. AFM investigation of the morphology of CaSO4 product layer formed during direct sulfation on polished single-crystal CaCO3 surfaces at high CO2 concentrations[J]. Proceedings of the Combustion Institute, 2011, 33(2):2683-2689.
[57] BAO J H, LI Z S, SUN H M, et al. Experiment and rate equation modeling of Fe oxidation kinetics in chemical looping combustion[J]. Combustion and Flame, 2013, 160(4):808-817.
[58] LI Z S, SUN H M, CAI N S. Rate equation theory for the carbonation reaction of CaO with CO2[J]. Energy & Fuels, 2012, 26(7):4607-4616.
[59] LI Z S, LIU Y, CAI N S. Understanding the enhancement effect of high-temperature steam on the carbonation reaction of CaO with CO2[J]. Fuel, 2014, 127:88-93.
[60] LI Z S. General rate equation theory for gas-solid reaction kinetics and its application to CaO carbonation[J]. Chemical Engineering Science, 2020, 227:115902.
[61] WANG H, LI Z S, FAN X X, et al. Rate-equation-based grain model for the carbonation of CaO with CO2[J]. Energy & Fuels, 2017, 31(12):14018-14032.
[62] WANG H, LI Z S, CAI N S. Reduced-order model for redox kinetics of oxygen carrier in chemical looping combustion[J]. Proceedings of the Combustion Institute, 2021, 38(4):5271-5279.
[63] WANG H, LI Z S, LI Y, et al. Reduced-order model for CaO carbonation kinetics measured using micro-fluidized bed thermogravimetric analysis[J]. Chemical Engineering Science, 2021, 229:116039.
[64] CHEN D G, ZHANG Z, LI Z S, et al. Optimizing in-situ char gasification kinetics in reduction zone of pulverized coal air-staged combustion[J]. Combustion and Flame, 2018, 194:52-71.
[65] LI Z S, CAI J Z, LIU L. A first-principles microkinetic rate equation theory for heterogeneous reactions:Application to reduction of Fe2O3 in chemical looping[J]. Industrial & Engineering Chemistry Research, 2021, 60(43):15514-15524.
[66] LIU L, LI Z S, LI Z A, et al. Heterogeneous reaction kinetics of a perovskite oxygen carrier for chemical looping combustion coupled with oxygen uncoupling[J]. Chemical Engineering Journal, 2021, 417:128054.
[67] HE K J, TANG Z Z, SONG Q, et al. Process analysis of SO3 removal by Ca(OH)2 particles from flue gas[J]. Chemical Engineering Science, 2022, 247:117054.
[68] WANG H, CHEN D G, LI Z S, et al. SO3 removal from flue gas with Ca(OH)2 in entrained flow reactors[J]. Energy & Fuels, 2018, 32(4):5364-5373.
[69] LI Y, LI Z S, LIU L, et al. Measuring the fast oxidation kinetics of a manganese oxygen carrier using microfluidized bed thermogravimetric analysis[J]. Chemical Engineering Journal, 2020, 385:123970.
[70] CHEN H, LI Z S, WANG R W. Design theory of a CLC air reactor with oxygen carrier recirculation and its application to a 3 MWth pilot[J]. Energy & Fuels, 2021, 35(2):1580-1593.
[71] ZHANG Z, LI Z S, CAI N S. Reduced-order model of char burning for CFD modeling[J]. Combustion and Flame, 2016, 165:83-96.
[1] 向晟, 刘奇磊, 张磊, 都健. 基于反应动力学的计算机辅助碳捕集有机胺溶剂设计[J]. 清华大学学报(自然科学版), 2024, 64(3): 520-527.
[2] 吴悠, 杨明, 杨斌. 航空煤油反应动力学模型的发展现状和挑战[J]. 清华大学学报(自然科学版), 2023, 63(4): 521-545.
[3] 杨斌, 刘仲铠, 林柯利, 廖万雄, 王乔. 面向碳中和与先进动力的燃烧反应动力学研究方法进展[J]. 清华大学学报(自然科学版), 2022, 62(4): 663-677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn