Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (4): 746-757    DOI: 10.16511/j.cnki.qhdxxb.2022.25.030
  综述 本期目录 | 过刊浏览 | 高级检索 |
清华大学能源与动力工程系人工心脏研究进展
黄博1, 李浩源1, 陆斌2, 左志钢1, 罗先武1, 刘树红1
1. 清华大学 能源与动力工程系, 北京 100084;
2. 浙江清科博动医疗科技有限公司, 台州 318010
Advances in the development of Artificial Hearts in the Department of Energy and Power Engineering of Tsinghua University
HUANG Bo1, LI Haoyuan1, LU Bin2, ZUO Zhigang1, LUO Xianwu1, LIU Shuhong1
1. Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China;
2. Zhejiang Qingke Pumping Medical Technology Limited, Taizhou 318010, China
全文: PDF(14252 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 离心式血泵作为最新一代人工心脏,为心血管疾病患者提供了有效的生命支持系统,挽救了数以百万计的心脏病患者的生命。该文对清华大学能源与动力工程系(简称能动系)团队在人工心脏领域的研发进展进行了详细介绍,包括:提出了以最大标量剪切应力(maximum scalar shear stress,MSSS)代替标准溶血指数作为优化指标的优化方法,减少了计算量,提升了优化效率;提出了基于湍流黏性耗散应力(turbulent viscous shear stress,TVSS)的血细胞损伤模型,以便更为准确地预测血细胞的损伤等。在人工心脏样机方面,顺利完成了体外式轴承和植入式磁液混合悬浮两种样机的研制,并获得了相应水力性能数据,实验数据与计算结果吻合较好,误差为3.6%。为了进一步推进样机研发,本研究团队搭建了医用流体机械综合测试平台,可用于测试人工心脏的生理性能。上述研究成果体现了清华大学能动系在人工心脏自主研发技术上取得的重要进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄博
李浩源
陆斌
左志钢
罗先武
刘树红
关键词 人工心脏离心泵水力性能溶血    
Abstract:The latest generation of Artificial Hearts are using centrifugal blood pumps to provide important support for patients with cardiovascular diseases. This paper describes the advances in the development of Artificial Hearts in the Department of Energy and Power Engineering of Tsinghua University. A pump design optimization method was proposed based on the maximum scalar shear stress for the hemolysis standard to raduce the calculational load and improve the optimization efficiency. A blood-cell-damage model based on the turbulent viscous dissipative stress was developed for better prediction. Both extracorporeal pumps with bearings and left ventricular assist device (LVAD) prototypes with magneto-hydraulic suspensions have been developed with studies of their hydraulics. Model predictions agree with the experimental data with an error of 3.6%. A medical fluid flow experimental system has been developed to improve research on Artificial Heart prototypes through evaluations of the physiological effects of new Artificial Heart designs.
Key wordsArtificial Hearts    centrifugal pumps    hydrodynamics    hemolysis
收稿日期: 2021-11-29      出版日期: 2022-04-14
基金资助:左志钢,副研究员,E-mail:zhigang200@mail.tsinghua.edu.cn;刘树红,教授,E-mail:liushuhong@mail.tsinghua.edu.cn
引用本文:   
黄博, 李浩源, 陆斌, 左志钢, 罗先武, 刘树红. 清华大学能源与动力工程系人工心脏研究进展[J]. 清华大学学报(自然科学版), 2022, 62(4): 746-757.
HUANG Bo, LI Haoyuan, LU Bin, ZUO Zhigang, LUO Xianwu, LIU Shuhong. Advances in the development of Artificial Hearts in the Department of Energy and Power Engineering of Tsinghua University. Journal of Tsinghua University(Science and Technology), 2022, 62(4): 746-757.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.030  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I4/746
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6):521-545. The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases burden in China:An updated summary of 2020[J]. Chinese Circulation Journal, 2021, 36(6):521-545. (in Chinese)
[2] CHRISTIE J D, EDWARDS L B, KUCHERYAVAYA A Y, et al. The registry of the International Society for Heart and Lung Transplantation:Twenty-eighth adult lung and heart-lung transplant report-2011[J]. The Journal of Heart and Lung Transplantation, 2011, 30(10):1104-1122.
[3] LUND L H, KHUSH K K, CHERIKH W S, et al. The registry of the International Society for Heart and Lung Transplantation:Thirty-fourth adult heart transplantation report-2017; focus theme:Allograft ischemic time[J]. The Journal of Heart and Lung Transplantation, 2017, 36(10):1037-1046.
[4] AL MASRI E, AL SHAKAKI M, WELP H, et al. Long-term follow-up of patients supported with the HeartWare left ventricular assist system[J]. Artificial Organs, 2020, 44(10):1061-1066.
[5] KAWAHITO K, NOSé Y. Hemolysis in different centrifugal pumps[J]. Artificial Organs, 1997, 21(4):323-326.
[6] SELMI M, CHIU W C, CHIVUKULA V K, et al. Blood damage in Left Ventricular Assist Devices:Pump thrombosis or system thrombosis?[J]. The International Journal of Artificial Organs, 2019, 42(3):113-124.
[7] KIRKLIN J K, NAFTEL D C, PAGANI F D, et al. Seventh INTERMACS annual report:15,000 patients and counting[J]. The Journal of Heart and Lung Transplantation, 2015, 34(12):1495-1504.
[8] RAVICHANDRAN A K, PARKER J, NOVAK E, et al. Hemolysis in left ventricular assist device:A retrospective analysis of outcomes[J]. The Journal of Heart and Lung Transplantation, 2014, 33(1):44-50.
[9] WHITSON B A, ECKMAN P, KAMDAR F, et al. Hemolysis, pump thrombus, and neurologic events in continuous-flow left ventricular assist device recipients[J]. The Annals of Thoracic Surgery, 2014, 97(6):2097-2103.
[10] BERK Z B K, ZHANG J F, CHEN Z S, et al. Evaluation of in vitro hemolysis and platelet activation of a newly developed maglev LVAD and two clinically used LVADs with human blood[J]. Artificial Organs, 2019, 43(9):870-879.
[11] SCHIMA H, MüLLER M R, PAPANTONIS D, et al. Minimization of hemolysis in centrifugal blood pumps:Influence of different geometries[J]. The International Journal of Artificial Organs, 1993, 16(7):521-529.
[12] KIRKLIN J K, NAFTEL D C, KORMOS R L, et al. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device[J]. The Journal of Heart and Lung Transplantation, 2014, 33(1):12-22.
[13] BLITZ A. Pump thrombosis:A riddle wrapped in a mystery inside an enigma[J]. Annals of Cardiothoracic Surgery, 2014, 3(5):450-471.
[14] KANNOJIYA V, DAS A K, DAS P K. Numerical simulation of centrifugal and hemodynamically levitated LVAD for performance improvement[J]. Artificial Organs, 2020, 44(2):E1-E19.
[15] OZTURK C, AKA I B, LAZOGLU I. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump[J]. The International Journal of Artificial Organs, 2018, 41(11):730-737.
[16] KIM N J, DIAO C G, AHN K H, et al. Parametric study of blade tip clearance, flow rate, and impeller speed on blood damage in rotary blood pump[J]. Artificial Organs, 2009, 33(6):468-474.
[17] AKA I B, OZTURK C, LAZOGLU I. Numerical investigation of volute tongue design on hemodynamic characteristics and hemolysis of the centrifugal blood pump[J]. SN Applied Sciences, 2021, 3(1):49.
[18] NOBILI M, SHERIFF J, MORBIDUCCI U, et al. Platelet activation due to hemodynamic shear stresses:Damage accumulation model and comparison to in vitro measurements[J]. ASAIO Journal, 2008, 54(1):64-72.
[19] WIEGMANN L, BOËS S, DE ZéLICOURT D, et al. Blood pump design variations and their influence on hydraulic performance and indicators of hemocompatibility[J]. Annals of Biomedical Engineering, 2018, 46(3):417-428.
[20] ASTM Standards. Standard Practice for Assessment of Hemolysis in Continuous Flow Blood Pumps:ASTM F1841-97[S]. West Conshohocken, PA:ASTM International, 2013.
[21] 孙坤, 陈琛. 人工心脏泵用磁轴承系统的起浮特性研究[J]. 机床与液压, 2017, 45(23):101-104, 141. SUN K, CHEN C. Research on start-up characteristic for maglev artificial heart pump[J]. Machine Tool & Hydraulics, 2017, 45(23):101-104, 141. (in Chinese)
[22] 张岩, 胡盛寿, 周建业, 等. FW型轴流泵的体外溶血与动物实验研究[J]. 中国胸心血管外科临床杂志, 2009, 16(2):114-117. ZHANG Y, HU S S, ZHOU J Y, et al. Experimental study of hemolysis in vitro and animal testing for Fu Wai axial blood pump[J]. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2009, 16(2):114-117. (in Chinese)
[23] 李冰一, 蔺嫦燕, 姜以岭, 等. 五种叶轮血泵体外溶血试验的研究[J]. 生物医学工程学杂志, 2002, 19(3):479-482. LI B Y, LIN C Y, JIANG Y L, et al. Hemolysis test of the five kinds of impeller blood pumps in vitro[J]. Journal of Biomedical Engineering, 2002, 19(3):479-482. (in Chinese)
[24] 杨晓琛, 张岩, 桂幸民. 叶轮式辅助心脏泵装置优化设计[J]. 航空动力学报, 2011, 26(6):1370-1376. YANG X C, ZHANG Y, GUI X M. Optimization and design of an impeller assist heart pump device[J]. Journal of Aerospace Power, 2011, 26(6):1370-1376. (in Chinese)
[25] 徐学增, 易定华, 刘金成, 等. 新型左心辅助装置的体外溶血试验[J]. 第四军医大学学报, 2004, 25(10):928-929. XU X Z, YI D H, LIU J C, et al. In vitro hemolysis test of a novel left ventricular assist device[J]. Journal of the Fourth Military Medical University, 2004, 25(10):928-929. (in Chinese)
[26] 喻梦伊, 左志钢, 刘树红. 心脏泵启动过程的数值模拟[J]. 工程热物理学报, 2015, 36(8):1701-1705. YU M Y, ZUO Z G, LIU S H. Numerical simulation of blood pump during starting period[J]. Journal of Engineering Thermophysics, 2015, 36(8):1701-1705. (in Chinese)
[27] VAN OEVEREN W, TIELLIU I F, DE HART J. Comparison of modified chandler, roller pump, and ball valve circulation models for in vitro testing in high blood flow conditions:Application in thrombogenicity testing of different materials for vascular applications[J]. International Journal of Biomaterials, 2012, 2012:673163.
[28] PODER T G, NONKANI W G, LEPONKOUO é T. Blood warming and hemolysis:A systematic review with meta-analysis[J]. Transfusion Medicine Reviews, 2015, 29(3):172-180.
[29] KATZ J N, JENSEN B C, CHANG P P, et al. A multicenter analysis of clinical hemolysis in patients supported with durable, long-term left ventricular assist device therapy[J]. The Journal of Heart and Lung Transplantation, 2015, 34(5):701-709.
[30] MOZAFARI S, REZAIENIA M A, PAUL G M, et al. The effect of geometry on the efficiency and hemolysis of centrifugal implantable blood pumps[J]. ASAIO Journal, 2017, 63(1):53-59.
[31] WU J C, PADEN B E, BOROVETZ H S, et al. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device[J]. Artificial Organs, 2010, 34(5):402-411.
[32] TASKIN M E, FRASER K H, ZHANG T, et al. Evaluation of Eulerian and Lagrangian models for hemolysis estimation[J]. ASAIO Journal, 2012, 58(4):363-372.
[33] BLUDSZUWEIT C. Model for a general mechanical blood damage prediction[J]. Artificial Organs, 1995, 19(7):583-589.
[34] HEUSER G, OPITZ R. A Couette viscometer for short time shearing of blood[J]. Biorheology, 1980, 17(1-2):17-24.
[35] GE L, DASI L P, SOTIROPOULOS F, et al. Characterization of hemodynamic forces induced by mechanical heart valves:Reynolds vs. viscous stresses[J]. Annals of Biomedical Engineering, 2008, 36(2):276-297.
[36] GOUBERGRITS L, OSMAN J, MEVERT R, et al. Turbulence in blood damage modeling[J]. The International Journal of Artificial Organs, 2016, 39(4):160-165.
[37] JONES S A. A relationship between reynolds stresses and viscous dissipation:Implications to red cell damage[J]. Annals of Biomedical Engineering, 1995, 23(1):21-28.
[38] OZTURK M, O'REAR E A, PAPAVASSILIOU D V. Hemolysis related to turbulent eddy size distributions using comparisons of experiments to computations[J]. Artificial Organs, 2015, 39(12):E227-E239.
[39] JOHANSEN S T, WU J, SHYY W. Filter-based unsteady RANS computations[J]. International Journal of Heat and Fluid Flow, 2004, 25:10-21.
[40] MALINAUSKAS R A, HARIHARAN P, DAY S W, et al. FDA benchmark medical device flow models for CFD validation[J]. ASAIO Journal, 2017, 63(2):150-160.
[1] 范红雨, 陆奇志, 龚景松, 朴英. 加力燃油离心泵关死点工况引射冷却分析[J]. 清华大学学报(自然科学版), 2016, 56(6): 661-665.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn