Abstract:The flame dynamics strongly affect the accurate prediction and control of self-excited oscillations in combustion systems. This paper introduces the authors' research on the theoretical modeling and experimental verification of the flame dynamics characteristics for various practical application backgrounds, including ideal non-premixed jet flames, bluff body premixed flames, main/piloted flames and flames with multi-dimensional disturbances. This review presents a distributed flame transfer function for non-premixed flames developed using the Green's function method. The interaction mechanism between the vortex and the flame surface was studied using the flame surface equation and the discrete vortex model. The interaction mechanism between the pilot flame and the main flame was studied through modeling. The response characteristics of flames to disturbances in various directions were also studied. The flame dynamics model was combined with an acoustic network model to show that the flame dynamics have different effects on the thermoacoustic modal stability.
王译晨, 朱民. 火焰动力学及其对热声稳定性的影响[J]. 清华大学学报(自然科学版), 2022, 62(4): 785-793.
WANG Yichen, ZHU Min. Flame dynamics and their effect on thermoacoustic instabilities. Journal of Tsinghua University(Science and Technology), 2022, 62(4): 785-793.
[1] RAYLEIGH L. The theory of sound[M]. New York:Dover Publications, 1896. [2] 翁方龙. 燃烧系统热声耦合拍振及其主动控制[D]. 北京:清华大学, 2016. WENG F L. Thermoacoustic beating oscillations in combustion systems and their active control[D]. Beijing:Tsinghua University, 2016. (in Chinese) [3] 姚兆普. 非预混火焰热声耦合机理的理论和计算分析[D]. 北京:清华大学, 2011. YAO Z P. Theoretical and computational analysis of thermoacoustic oscillations for non-premixed flames[D]. Beijing:Tsinghua University, 2011. (in Chinese) [4] BALASUBRAMANIAN K, SUJITH R I. Non-normality and nonlinearity in combustion-acoustic interaction in diffusion flames[J]. Journal of Fluid Mechanics, 2008, 594:29-57. DOI:10.1017/S0022112007008737. [5] BALASUBRAMANIAN K, SUJITH R I. Nonlinear response of diffusion flames to uniform velocity disturbances[J]. Combustion Science and Technology, 2008, 180(3):418-436. DOI:10.1080/00102200701741178. [6] TYAGI M, JAMADAR N, CHAKRAVARTHY S. Oscillatory response of an idealized two-dimensional diffusion flame:Analytical and numerical study[J]. Combustion and Flame, 2007, 149(3):271-285. DOI:10.1016/j.combustflame.2006.12.020. [7] BURKE S P, SCHUMANN T E W. Diffusion flames[J]. Industrial and Engineering Chemistry, 1928, 20(10):998-1004. DOI:10.1021/ie50226a005. [8] 景李玥, 姚兆普, 王辽, 等. 分布式非预混火焰传递函数的实验研究[J]. 推进技术, 2015, 36(1):1-8. JING L Y, YAO Z P, WANG L, et al. Experimental investigation of distributed flame transfer function for non-premixed flame[J]. Journal of Propulsion Technology, 2015, 36(1):1-8. (in Chinese) [9] 姚兆普, 朱民. 非预混火焰热斑产生和演化的理论计算[J]. 推进技术, 2012, 33(4):530-535. YAO Z P, ZHU M. Analytical calculation of generation and evolution of hot spots in non-premixed flames[J]. Journal of Propulsion Technology, 2012, 33(4):530-535. (in Chinese) [10] ZHU M, DOWLING A P, BRAY K N C. Transfer function calculations for aeroengine combustion oscillations[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(1):18-26. DOI:10.1115/1.1806451. [11] 任泽天. 钝体流动声学特性及对火焰稳定性影响的研究[D]. 北京:清华大学, 2018. REN Z T. Study of aeroacoustic characteristics of bluff-body and influence on flame instabilities[D]. Beijing:Tsinghua University, 2018. (in Chinese) [12] ERICKSON R R, SOTERIOU M C. The influence of reactant temperature on the dynamics of bluff body stabilized premixed flames[J]. Combustion and Flame, 2011, 158(12):2441-2457. DOI:10.1016/j.combustflame.2011.05.006. [13] NOTTIN C, KNIKKER R, BOGER M, et al. Large eddy simulations of an acoustically excited turbulent premixed flame[J]. Proceedings of the Combustion Institute, 2000, 28(1):67-73. DOI:10.1016/S0082-0784(00)80196-4. [14] BALACHANDRAN R, AYOOLA B, KAMINSKI C, et al. Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations[J]. Combustion and Flame, 2005, 143(1-2):37-55. DOI:10.1016/j.combustflame.2005.04.009. [15] DOWLING A P. A kinematic model of a ducted flame[J]. Journal of Fluid Mechanics, 1999, 394:51-72. DOI:10.1017/S0022112099005686. [16] RAMESH K, GOPALARATHNAM A, GRANLUND K, et al. Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding[J]. Journal of Fluid Mechanics, 2014, 751:500-538. DOI:10.1017/jfm.2014.297. [17] DRISCOLL T A, TREFETHEN L N. Schwarz-Christoffel mapping[M]. Cambridge:Cambridge University Press, 2002. [18] 李春炎. 多火焰动力学特性及其对热声稳定性的影响研究[D]. 北京:清华大学, 2018. LI C Y. Investigations of the dynamics of multi-flame and its effect on thermoacoustic stabilities[D]. Beijing:Tsinghua University, 2018. (in Chinese) [19] ALBRECHT P, BADE S, LACARELLE A, et al. Instability control by premixed pilot flames[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(4):041501. DOI:10.1115/1.3019293. [20] DHANUKA S K, TEMME J E, DRISCOLL J F. Unsteady aspects of lean premixed prevaporized gas turbine combustors:Flame-flame interactions[J]. Journal of Propulsion and Power, 2011, 27(3):631-641. DOI:10.2514/1.B34001. [21] FU X, YANG F J, GUO Z H. Combustion instability of pilot flame in a pilot bluff body stabilized combustor[J]. Chinese Journal of Aeronautics, 2015, 28(6):1606-1615. DOI:10.1016/j.cja.2015.08.018. [22] O'CONNOR J, LIEUWEN T. Disturbance field characteristics of a transversely excited burner[J]. Combustion Science and Technology, 2011, 183(5):427-443. DOI:10.1080/00102202.2010.529478. [23] SAURABH A, PASCHEREIT C O. Dynamics of premixed swirl flames under the influence of transverse acoustic fluctuations[J]. Combustion and Flame, 2017, 182:298-312. DOI:10.1016/j.combustflame.2017.04.014. [24] ACHARYA V, LIEUWEN T. Premixed flame response to helical disturbances:Mean flame non-axisymmetry effects[J]. Combustion and Flame, 2016, 165:188-197. DOI:10.1016/j.combustflame.2015.12.003. [25] BAUERHEIM M, PARMENTIER J F, SALAS P, et al. An analytical model for azimuthal thermoacoustic modes in an annular chamber fed by an annular plenum[J]. Combustion and Flame, 2014, 161(5):1374-1389. DOI:10.1016/j.combustflame.2013.11.014. [26] BUSCHMANN P E, MENSAH G A, NICOUD F, et al. Solution of thermoacoustic eigenvalue problems with a noniterative method[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(3):031022. DOI:10.1115/1.4045076. [27] SOGARO F M, SCHMID P J, MORGANS A S. Thermoacoustic interplay between intrinsic thermoacoustic and acoustic modes:Non-normality and high sensitivities[J]. Journal of Fluid Mechanics, 2019, 878:190-220. DOI:10.1017/jfm.2019.632. [28] BAUERHEIM M, CAZALENS M, POINSOT T. A theoretical study of mean azimuthal flow and asymmetry effects on thermo-acoustic modes in annular combustors[J]. Proceedings of the Combustion Institute, 2015, 35(3):3219-3227. DOI:10.1016/j.proci.2014.05.053. [29] LI C Y, YANG D, LI S H, et al. An analytical study of the effect of flame response to simultaneous axial and transverse perturbations on azimuthal thermoacoustic modes in annular combustors[J]. Proceedings of the Combustion Institute, 2019, 37(4):5279-5287. DOI:10.1016/j.proci.2018.05.121.