Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (4): 785-793    DOI: 10.16511/j.cnki.qhdxxb.2022.25.021
  论文 本期目录 | 过刊浏览 | 高级检索 |
火焰动力学及其对热声稳定性的影响
王译晨, 朱民
清华大学 能源与动力工程系, 北京 100084
Flame dynamics and their effect on thermoacoustic instabilities
WANG Yichen, ZHU Min
Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(9338 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 火焰动力学特性对燃烧系统热声振荡的准确预测和控制具有重要的意义。该文介绍了作者团队近年来针对不同应用背景下的火焰动力学特性在理论建模和实验验证方面的研究,包括理想非预混射流火焰、钝体预混火焰、值班火焰等组织方式以及多维扰动下的火焰动力学特性。其中:通过Green函数法建立了非预混火焰的分布式火焰传递函数;通过火焰面方程和离散涡模型研究了涡和火焰面的相互作用机理;通过双火焰面模型研究了值班火焰和主火焰之间的相互作用机理;通过非对称火焰模型,研究了火焰对不同方向扰动的响应特征。结果表明,将火焰动力学模型与声学网络模型结合分析,可以得到火焰动力学对燃烧室热声稳定性的影响机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王译晨
朱民
关键词 火焰动力学热声振荡钝体火焰值班火焰声学网络模型    
Abstract:The flame dynamics strongly affect the accurate prediction and control of self-excited oscillations in combustion systems. This paper introduces the authors' research on the theoretical modeling and experimental verification of the flame dynamics characteristics for various practical application backgrounds, including ideal non-premixed jet flames, bluff body premixed flames, main/piloted flames and flames with multi-dimensional disturbances. This review presents a distributed flame transfer function for non-premixed flames developed using the Green's function method. The interaction mechanism between the vortex and the flame surface was studied using the flame surface equation and the discrete vortex model. The interaction mechanism between the pilot flame and the main flame was studied through modeling. The response characteristics of flames to disturbances in various directions were also studied. The flame dynamics model was combined with an acoustic network model to show that the flame dynamics have different effects on the thermoacoustic modal stability.
Key wordsflame dynamics    thermoacoustic oscillations    bluff-body stabilized flames    pilot flames    acoustic network model
收稿日期: 2021-09-30      出版日期: 2022-04-14
基金资助:朱民,教授,E-mail:zhumin@tsinghua.edu.cn
引用本文:   
王译晨, 朱民. 火焰动力学及其对热声稳定性的影响[J]. 清华大学学报(自然科学版), 2022, 62(4): 785-793.
WANG Yichen, ZHU Min. Flame dynamics and their effect on thermoacoustic instabilities. Journal of Tsinghua University(Science and Technology), 2022, 62(4): 785-793.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.021  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I4/785
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] RAYLEIGH L. The theory of sound[M]. New York:Dover Publications, 1896.
[2] 翁方龙. 燃烧系统热声耦合拍振及其主动控制[D]. 北京:清华大学, 2016. WENG F L. Thermoacoustic beating oscillations in combustion systems and their active control[D]. Beijing:Tsinghua University, 2016. (in Chinese)
[3] 姚兆普. 非预混火焰热声耦合机理的理论和计算分析[D]. 北京:清华大学, 2011. YAO Z P. Theoretical and computational analysis of thermoacoustic oscillations for non-premixed flames[D]. Beijing:Tsinghua University, 2011. (in Chinese)
[4] BALASUBRAMANIAN K, SUJITH R I. Non-normality and nonlinearity in combustion-acoustic interaction in diffusion flames[J]. Journal of Fluid Mechanics, 2008, 594:29-57. DOI:10.1017/S0022112007008737.
[5] BALASUBRAMANIAN K, SUJITH R I. Nonlinear response of diffusion flames to uniform velocity disturbances[J]. Combustion Science and Technology, 2008, 180(3):418-436. DOI:10.1080/00102200701741178.
[6] TYAGI M, JAMADAR N, CHAKRAVARTHY S. Oscillatory response of an idealized two-dimensional diffusion flame:Analytical and numerical study[J]. Combustion and Flame, 2007, 149(3):271-285. DOI:10.1016/j.combustflame.2006.12.020.
[7] BURKE S P, SCHUMANN T E W. Diffusion flames[J]. Industrial and Engineering Chemistry, 1928, 20(10):998-1004. DOI:10.1021/ie50226a005.
[8] 景李玥, 姚兆普, 王辽, 等. 分布式非预混火焰传递函数的实验研究[J]. 推进技术, 2015, 36(1):1-8. JING L Y, YAO Z P, WANG L, et al. Experimental investigation of distributed flame transfer function for non-premixed flame[J]. Journal of Propulsion Technology, 2015, 36(1):1-8. (in Chinese)
[9] 姚兆普, 朱民. 非预混火焰热斑产生和演化的理论计算[J]. 推进技术, 2012, 33(4):530-535. YAO Z P, ZHU M. Analytical calculation of generation and evolution of hot spots in non-premixed flames[J]. Journal of Propulsion Technology, 2012, 33(4):530-535. (in Chinese)
[10] ZHU M, DOWLING A P, BRAY K N C. Transfer function calculations for aeroengine combustion oscillations[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(1):18-26. DOI:10.1115/1.1806451.
[11] 任泽天. 钝体流动声学特性及对火焰稳定性影响的研究[D]. 北京:清华大学, 2018. REN Z T. Study of aeroacoustic characteristics of bluff-body and influence on flame instabilities[D]. Beijing:Tsinghua University, 2018. (in Chinese)
[12] ERICKSON R R, SOTERIOU M C. The influence of reactant temperature on the dynamics of bluff body stabilized premixed flames[J]. Combustion and Flame, 2011, 158(12):2441-2457. DOI:10.1016/j.combustflame.2011.05.006.
[13] NOTTIN C, KNIKKER R, BOGER M, et al. Large eddy simulations of an acoustically excited turbulent premixed flame[J]. Proceedings of the Combustion Institute, 2000, 28(1):67-73. DOI:10.1016/S0082-0784(00)80196-4.
[14] BALACHANDRAN R, AYOOLA B, KAMINSKI C, et al. Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations[J]. Combustion and Flame, 2005, 143(1-2):37-55. DOI:10.1016/j.combustflame.2005.04.009.
[15] DOWLING A P. A kinematic model of a ducted flame[J]. Journal of Fluid Mechanics, 1999, 394:51-72. DOI:10.1017/S0022112099005686.
[16] RAMESH K, GOPALARATHNAM A, GRANLUND K, et al. Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding[J]. Journal of Fluid Mechanics, 2014, 751:500-538. DOI:10.1017/jfm.2014.297.
[17] DRISCOLL T A, TREFETHEN L N. Schwarz-Christoffel mapping[M]. Cambridge:Cambridge University Press, 2002.
[18] 李春炎. 多火焰动力学特性及其对热声稳定性的影响研究[D]. 北京:清华大学, 2018. LI C Y. Investigations of the dynamics of multi-flame and its effect on thermoacoustic stabilities[D]. Beijing:Tsinghua University, 2018. (in Chinese)
[19] ALBRECHT P, BADE S, LACARELLE A, et al. Instability control by premixed pilot flames[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(4):041501. DOI:10.1115/1.3019293.
[20] DHANUKA S K, TEMME J E, DRISCOLL J F. Unsteady aspects of lean premixed prevaporized gas turbine combustors:Flame-flame interactions[J]. Journal of Propulsion and Power, 2011, 27(3):631-641. DOI:10.2514/1.B34001.
[21] FU X, YANG F J, GUO Z H. Combustion instability of pilot flame in a pilot bluff body stabilized combustor[J]. Chinese Journal of Aeronautics, 2015, 28(6):1606-1615. DOI:10.1016/j.cja.2015.08.018.
[22] O'CONNOR J, LIEUWEN T. Disturbance field characteristics of a transversely excited burner[J]. Combustion Science and Technology, 2011, 183(5):427-443. DOI:10.1080/00102202.2010.529478.
[23] SAURABH A, PASCHEREIT C O. Dynamics of premixed swirl flames under the influence of transverse acoustic fluctuations[J]. Combustion and Flame, 2017, 182:298-312. DOI:10.1016/j.combustflame.2017.04.014.
[24] ACHARYA V, LIEUWEN T. Premixed flame response to helical disturbances:Mean flame non-axisymmetry effects[J]. Combustion and Flame, 2016, 165:188-197. DOI:10.1016/j.combustflame.2015.12.003.
[25] BAUERHEIM M, PARMENTIER J F, SALAS P, et al. An analytical model for azimuthal thermoacoustic modes in an annular chamber fed by an annular plenum[J]. Combustion and Flame, 2014, 161(5):1374-1389. DOI:10.1016/j.combustflame.2013.11.014.
[26] BUSCHMANN P E, MENSAH G A, NICOUD F, et al. Solution of thermoacoustic eigenvalue problems with a noniterative method[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(3):031022. DOI:10.1115/1.4045076.
[27] SOGARO F M, SCHMID P J, MORGANS A S. Thermoacoustic interplay between intrinsic thermoacoustic and acoustic modes:Non-normality and high sensitivities[J]. Journal of Fluid Mechanics, 2019, 878:190-220. DOI:10.1017/jfm.2019.632.
[28] BAUERHEIM M, CAZALENS M, POINSOT T. A theoretical study of mean azimuthal flow and asymmetry effects on thermo-acoustic modes in annular combustors[J]. Proceedings of the Combustion Institute, 2015, 35(3):3219-3227. DOI:10.1016/j.proci.2014.05.053.
[29] LI C Y, YANG D, LI S H, et al. An analytical study of the effect of flame response to simultaneous axial and transverse perturbations on azimuthal thermoacoustic modes in annular combustors[J]. Proceedings of the Combustion Institute, 2019, 37(4):5279-5287. DOI:10.1016/j.proci.2018.05.121.
[1] 余志健, 杨倩雯, 王译晨, 杨东, 朱民. 燃烧振荡声学抑制器的机理分析与设计优化[J]. 清华大学学报(自然科学版), 2023, 63(4): 487-504.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn