Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (8): 1321-1329    DOI: 10.16511/j.cnki.qhdxxb.2022.25.028
  智能预测反馈 本期目录 | 过刊浏览 | 高级检索 |
基于GA-BP神经网络的拱坝地震易损性分析
于京池1, 金爱云2, 潘坚文1, 王进廷1, 张楚汉1
1. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084;
2. 中国水利水电第九工程局有限公司, 贵阳 550081
GA-BP artificial neural networks for predicting the seismic response of arch dams
YU Jingchi1, JIN Aiyun2, PAN Jianwen1, WANG Jinting1, ZHANG Chuhan1
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. SINOHYDRO BUREAU 9 Co., LTD., Guiyang 550081, China
全文: PDF(12383 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 拱坝在其生命周期内可能会承受强烈地震,其地震易损性引起了广泛的关注。一般而言,采用非线性有限元法进行拱坝的地震易损性分析,需要大量的计算工作量。该文提出了一种预测拱坝地震响应的方法——基于遗传算法(genetic algorithm,GA)的多层前馈(back propagation,BP)神经网络,该方法可以替代部分非线性有限元分析计算,显著减少计算成本。以大岗山拱坝的易损性分析为算例,基于已有的390个有限元非线性动力分析工况数据,将结构的响应设定为BP神经网络的输出,地震强度参数IM作为输入,进行BP神经网络的训练和验证。结果表明,该文提出的GA-BP神经网络采用390个有限元结果中的30%的数据进行训练,即可得到满足精度的预测结果,给出合理的拱坝地震易损性曲线,说明采用GA-BP神经网络后可节省70%的非线性有限元计算成本。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于京池
金爱云
潘坚文
王进廷
张楚汉
关键词 拱坝地震易损性分析人工神经网络遗传算法    
Abstract:Arch dams may be subjected to strong earthquakes during their lifecycle and their seismic response has attracted extensive attention in dam engineering. Nonlinear finite element seismic response analyses of arch dams require large amounts of computational effort. This paper presents a back propagation (BP) genetic algorithm (GA) method for predict the seismic responses of arch dams which replaces some of the finite element analysis calculations and significantly reduces the computational cost compared with the finite element method. A BP neural network was trained and validated for the Dagangshan arch dam based on 390 nonlinear dynamic response cases calculated using the finite element method with the structural response as the BP neural network output and the seismic intensity parameter, IM, as the input. The results show that the GA-BP neural network can properly predict the dam seismic response and give reasonable seismic response curves using 30% of the 390 cases for training which shows that the GA-BP neural network can save 70% of the nonlinear finite element cost.
Key wordsarch dam    seismic fragility analysis    artificial neural network    genetic algorithm
收稿日期: 2021-11-04      出版日期: 2022-03-31
基金资助:国家自然科学基金项目(51725901,52022047,51639006)
通讯作者: 王进廷,教授,E-mail:wangjt@tsinghua.edu.cn      E-mail: wangjt@tsinghua.edu.cn
作者简介: 于京池(1994—),女,博士研究生。
引用本文:   
于京池, 金爱云, 潘坚文, 王进廷, 张楚汉. 基于GA-BP神经网络的拱坝地震易损性分析[J]. 清华大学学报(自然科学版), 2022, 62(8): 1321-1329.
YU Jingchi, JIN Aiyun, PAN Jianwen, WANG Jinting, ZHANG Chuhan. GA-BP artificial neural networks for predicting the seismic response of arch dams. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1321-1329.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.028  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I8/1321
  
  
  
  
  
  
  
  
  
[1] CHEN H J, XU W Y, WU Q X, et al. Reliability analysis of arch dam subjected to seismic loads[J]. Arabian Journal for Science and Engineering, 2014, 39(11):7609-7619.
[2] YAO X W, ELNASHAI A S, JIANG J Q. Analytical seismic fragility analysis of concrete arch dams[C]//Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon, Portugal:WCEE, 2012.
[3] WANG J T, ZHANG M X, JIN A Y, et al. Seismic fragility of arch dams based on damage analysis[J]. Soil Dynamics and Earthquake Engineering, 2018, 109:58-68.
[4] ANDERSON D, MCNEILL G. Artificial neural networks technology[R]. New York:Data & Analysis Center for Software, 1992.
[5] LIU K, GUO W Y, SHEN X L, et al. Research on the forecast model of electricity power industry loan based on GA-BP neural network[J]. Energy Procedia, 2012, 14:1918-1924.
[6] FENG G L, LI L. Application of genetic algorithm and neural network in construction cost estimate[C]//Proceedings of the 2012 2nd International Conference on Computer and Information Application. Paris, France:Atlantis Press, 2012:1036-1039.
[7] 余功栓. 人工智能技术在大坝安全分析中的应用[D]. 杭州:浙江大学, 2004. YU G S. Application of artificial intelligent in safety analysis of embankment[D]. Hangzhou:Zhejiang University, 2004. (in Chinese)
[8] DING S F, SU C Y, YU J Z. An optimizing BP neural network algorithm based on genetic algorithm[J]. Artificial Intelligence Review, 2011, 36(2):153-162.
[9] MATA J. Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models[J]. Engineering Structures, 2011, 33(3):903-910.
[10] SONG L F, XU B, KONG X J, et al. Reliability analysis of 3D rockfill dam slope stability based on the Copula function[J]. International Journal of Geomechanics, 2021, 21(3):04021001.
[11] LIU J, WANG G Y, CHEN Y. Research and application of GA neural network model on dam displacement forecasting[C]//11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Long Beach, California, USA:ASCE, 2008, 323:1-9.
[12] 苏怀智, 吴中如, 温志萍, 等. 遗传算法在大坝安全监控神经网络预报模型建立中的应用[J]. 水利学报, 2001(8):44-48. SU H Z, WU Z R, WEN Z P, et al. The application of genetic algorithm in establishment of neural network forecast model for dam safety monitoring[J]. Journal of Hydraulic Engineering, 2001(8):44-48. (in Chinese)
[13] MCCULLOCH W S, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5(4):115-133.
[14] HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8):2554-2558.
[15] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-536.
[16] 刘春艳, 凌建春, 蔻林元, 等. GA-BP神经网络与BP神经网络性能比较[J]. 中国卫生统计, 2013, 30(2):173-176, 181. LIU C Y, LING J C, KOU L Y, et al. Performance comparison between GA-BP neural network and BP neural network[J]. Chinese Journal of Health Statistics, 2013, 30(2):173-176, 181. (in Chinese)
[17] 金爱云. 高拱坝地震易损性研究[D]. 北京:清华大学, 2020. JIN A Y. Seismic fragility analysis of high arch dams[D]. Beijing:Tsinghua University, 2020. (in Chinese)
[18] TOTHONG P, LUCO N. Probabilistic seismic demand analysis using advanced ground motion intensity measures[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(13):1837-1860.
[19] HARIRI-ARDEBILI M A, SAOUMA V E. Probabilistic seismic demand model and optimal intensity measure for concrete dams[J]. Structural Safety, 2016, 59:67-85.
[20] ARIAS A. A measure of earthquake intensity[M]//HANSEN R J. Seismic Design for Nuclear Power Plants. Cambridge, MA, USA:MIT Press, 1970:438-483.
[21] 崔恩文. 基于速度谱强度高铁列车地震报警阈值研究[D]. 哈尔滨:中国地震局工程力学研究所, 2014. CUI E W. Study on spectral intensity of speed based earthquake alarm threshold of high speed trains[D]. Harbin:China Earthquake Administration, 2014. (in Chinese)
[22] YANG D X, PAN J W, LI G. Non-structure-specific intensity measure parameters and characteristic period of near-fault ground motions[J]. Earthquake Engineering & Structural Dynamics, 2009, 38(11):1257-1280.
[23] ZHANG C H, JIN F, WANG J T, et al. Nonlinear behavior and seismic safety evaluation of concrete dams[M]. Beijing:Tsinghua University Press, 2012.
[24] 潘坚文, 王进廷, 张楚汉. 超强地震作用下拱坝的损伤开裂分析[J]. 水利学报, 2007, 38(2):143-149. PAN J W, WANG J T, ZHANG C H. Analysis of damage and cracking in arch dams subjected to extremely strong earthquake[J]. Journal of Hydraulic Engineering, 2007, 38(2):143-149. (in Chinese)
[25] LIU J B, LI B. A unified viscous-spring artificial boundary for 3-D static and dynamic applications[J]. Science in China Series E-Engineering & Materials Science, 2005, 48(5):570-584.
[26] LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
[27] 潘坚文. 高混凝土坝静动力非线性断裂与地基辐射阻尼模拟研究[D]. 北京:清华大学, 2010. PAN J W. Nonlinear static and seismic fracture analysis of high concrete dams and modeling of radiation damping for foundation[D]. Beijing:Tsinghua University, 2010. (in Chinese)
[28] SHOME N, CORNELL C A. Probabilistic seismic demand analysis of nonlinear structures[D]. Stanford:Stanford University, 1999.
[29] 吕大刚, 于晓辉, 潘峰, 等. 基于改进云图法的结构概率地震需求分析[J]. 世界地震工程, 2010, 26(1):7-15. LÜ D G, YU X H, PAN F, et al. Probabilistic seismic demand analysis of structures based on an improved cloud method[J]. World Earthquake and Engineering, 2010, 26(1):7-15. (in Chinese)
[1] 黄爱玲, 王子吉安, 张哲, 李名杰, 宋悦. 考虑碳排放影响的大型机场陆侧多交通方式运力匹配模型[J]. 清华大学学报(自然科学版), 2023, 63(11): 1729-1740.
[2] 代鑫, 陈举师, 陈涛, 黄弘, 李志鹏, 余水平. 抽水蓄能电站应急排水多目标优化方法及算例分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1558-1565.
[3] 庄文宇, 张如九, 徐建军, 殷亮, 魏海宁, 刘耀儒. 基于IAGA-BP算法的高拱坝-坝基力学参数反演分析[J]. 清华大学学报(自然科学版), 2022, 62(8): 1302-1313.
[4] 王兴旺, 刘耀儒, 吕帅, 杨强. 高拱坝蓄水期库岸变形与水库诱发地震相关性研究[J]. 清华大学学报(自然科学版), 2022, 62(8): 1341-1350.
[5] 周伟, 李敏, 丘铭军, 张西龙, 柳江, 张洪波. 基于改进遗传算法的车身板件厚度优化[J]. 清华大学学报(自然科学版), 2022, 62(3): 523-532.
[6] 谭尧升, 陈文夫, 林恩德, 林鹏, 周天刚, 周孟夏, 刘春风, 裴磊, 梁程, 尚超, 杨鹏博, 姚孟迪, 李向前, 李俊平. 特高拱坝施工期多维信息模型研究与实践[J]. 清华大学学报(自然科学版), 2022, 62(12): 1884-1895.
[7] 谭尧升, 樊启祥, 汪志林, 陈文夫, 郭增光, 林恩德, 林鹏, 周天刚, 周孟夏, 刘春风, 龚攀, 裴磊. 白鹤滩特高拱坝智能建造技术与应用实践[J]. 清华大学学报(自然科学版), 2021, 61(7): 694-704.
[8] 刘有志, 张国新, 谭尧升, 刘春风, 龚攀, 裴磊. 仿真大坝建设关键技术与实践应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 714-723.
[9] 乔雨, 杨宁, 谭鹏, 彭浩洋, 吴卫, 周大建, 王潇楠. 大体积混凝土红外测温影响因素研究与工程应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 730-737.
[10] 王峰, 周宜红, 赵春菊, 周华维, 陈文夫, 谭尧升, 梁志鹏, 潘志国, 王放. 基于混合粒子群算法的特高拱坝不同材料热学参数反演分析[J]. 清华大学学报(自然科学版), 2021, 61(7): 747-755.
[11] 王飞, 刘金飞, 尹习双, 谭尧升, 周天刚, 杨支跃, 冯博, 杨小龙. 高拱坝智能进度仿真理论与关键技术[J]. 清华大学学报(自然科学版), 2021, 61(7): 756-767.
[12] 徐建江, 陈文夫, 谭尧升, 高世奎, 周天刚, 周孟夏, 刘春风, 梁程, 李向前. 特高拱坝混凝土运输智能化关键技术与应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 768-776.
[13] 汪俊东, 赵越喆. 阶梯状声扩散体排布方式对扩散性能影响分析[J]. 清华大学学报(自然科学版), 2021, 61(3): 261-268.
[14] 王立平, 孔祥昱, 于广. 基于遗传算法的并混联机床电机伺服控制参数整定[J]. 清华大学学报(自然科学版), 2021, 61(10): 1106-1114.
[15] 魏鹏程, 林鹏, 汪志林, 王克祥, 黄纪村. 白鹤滩特高拱坝坝基灌浆时机与抬动控制[J]. 清华大学学报(自然科学版), 2020, 60(7): 557-565.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn