界面调控水下气泡捕获—输运—收集的研究和应用现状

高翔, 李昊洋, 张福建, 宋云云, 张忠强, 丁建宁

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (2) : 249-268.

PDF(25992 KB)
PDF(25992 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (2) : 249-268. DOI: 10.16511/j.cnki.qhdxxb.2024.21.039
温诗铸院士纪念专刊

界面调控水下气泡捕获—输运—收集的研究和应用现状

作者信息 +

Interface-controlled capture, transport, and collection of underwater bubbles: current research and applications

Author information +
文章历史 +

摘要

水下甲烷及其他燃料气体的捕获、输运与收集在当前全球环境与能源危机中扮演着至关重要的角色。甲烷作为温室气体, 使气候变暖的能力是二氧化碳的25倍, 因此水下甲烷的泄露不仅加剧全球变暖, 对地球健康构成严重威胁, 也阻碍了中国“双碳”目标的实现。水下燃料气体资源在近海区域广泛分布, 通过有效的界面调控技术手段捕获、输运并收集水下甲烷气泡, 既能缓解温室效应, 助力气候改善, 又能开发新型能源供给方案, 为全球能源危机的解决提供新思路。该文分析了捕获、输运与收集气泡过程中存在的问题, 从气泡捕获的基本原理与方法、气泡的输运方式、气泡一体化收集方法、气膜稳定性及流固界面减阻等方面进行了综述, 总结了捕获、输运与收集气泡过程中存在的挑战, 并给出合理建议。未来的技术突破将集中在设备小型化、集成化和智能化方面, 可借助微流控技术、智能界面控制系统和新材料, 实现更加高效的气泡捕获—输运—收集一体化操作。

Abstract

Significance: The capture, transport, and collection of underwater methane and other fuel gases are essential for addressing global environmental and energy challenges. Methane, a potent greenhouse gas, has a global warming potential that is 25 times greater than CO2, making underwater methane leaks a severe threat to climate stability and global health, and a challenge to China's dual carbon targets. In addition, as the US, Europe, and Japan advance their strategic goals for ocean exploration robots, China urgently needs to develop its underwater robots. Current equipment, reliant on cables and/or batteries limits endurance, Nonetheless, capturing underwater fuel gases offers opportunities for energy self-sufficiency and extended operational capabilities. The capture and utilization of underwater methane and other gases are vital for reducing greenhouse gas emissions, promoting environmental health, addressing energy shortages, and enhancing the endurance of underwater equipment. Progress: Recent advances in bubble capture, transport, and collection stem from interdisciplinary research merging micronanotechnology, material science, and fluid mechanics. Researchers have employed noncontact techniques, including electric fields, magnetic fields, and sound waves, to improve bubble stability and optimize their movement. Studying bubble physicochemical properties has helped overcome challenges such as rupture, coalescence, and trajectory oscillations caused by external disturbances, including fluid flow and temperature changes. Micronanotechnology has enabled precise manipulation over bubble interfacial behavior by leveraging surface structures and interfacial energy. Techniques such as using hydrophobic surfaces and capillary forces have improved bubble capture, whereas microstructured surfaces and optimized fluid channels allow precise, efficient transport. Advanced materials, including responsive polymers, further improve dynamic control of bubble flow paths, increasing overall efficiency. Notable progress has been made in gas collection. Porous materials and functionalized membranes now enable efficient gas separation and aggregation. Biomimetic structures inspired by natural systems, along with superhydrophobic surfaces, have improved bubble capture and stability, presenting promising solutions for integrated gas recovery systems. Conclusions and Prospects: Despite these advancements, considerable challenges remain. Bubbles in underwater environments are highly vulnerable to external disturbances, making their stable capture and efficient transport difficult. Furthermore, interactions between bubbles of varying sizes during transport can reduce separation efficiency and directional control, whereas inconsistent aggregation during collection further limits overall efficiency. Future research should address these challenges by integrating nanomaterials and advancing interfacial modification techniques for improved selectivity and precision of bubble capture in complex environments. Analyzinging the relationship between bubble properties and environmental factors through simulations and experiments can refine strategies for trajectory control, size classification, and stability. Moreover, the development of novel materials, including superhydrophobic and multifunctional surfaces, combined with innovations in external field applications (electric, magnetic, and optical), offers tremendous potential to revolutionize underwater gas recovery systems. These approaches, combined with advancements in theoretical models and experimental techniques, hold the promise of groundbreaking improvements in the efficiency and controllability of gas capture, transport, and collection processes. These efforts will support sustainable energy utilization and contribute to mitigating climate impacts and advancing ocean exploration technologies.

关键词

界面调控 / 气泡输运 / 气泡收集 / 气泡减阻

Key words

interface control / bubble transportation / bubble collection / bubble drag reduction

引用本文

导出引用
高翔, 李昊洋, 张福建, . 界面调控水下气泡捕获—输运—收集的研究和应用现状[J]. 清华大学学报(自然科学版). 2025, 65(2): 249-268 https://doi.org/10.16511/j.cnki.qhdxxb.2024.21.039
Xiang GAO, Haoyang LI, Fujian ZHANG, et al. Interface-controlled capture, transport, and collection of underwater bubbles: current research and applications[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(2): 249-268 https://doi.org/10.16511/j.cnki.qhdxxb.2024.21.039
中图分类号: TB34   

参考文献

1
SLOAN E D. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426(6964): 353- 359.
2
WARZINSKI R P, LYNN R, HALJASMAA I, et al. Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models[J]. Geophysical Research Letters, 2014, 41(19): 6841- 6847.
3
NISBET E G, DLUGOKENCKY E J, BOUSQUET P. Atmospheric science. Methane on the rise-again[J]. Science, 2014, 343(6170): 493- 495.
4
CHEN X, WU Y C, SU B, et al. Terminating marine methane bubbles by superhydrophobic sponges[J]. Advanced Materials, 2012, 24(43): 5884- 5889.
5
WANG X S, BAI H Y, YANG J R, et al. Designing flexible but tough slippery track for underwater gas manipulation[J]. Small, 2021, 17(8): 2007803.
6
ZHOU Y T, DAI L G, JIAO N D. Review of bubble applications in microrobotics: propulsion, manipulation, and assembly[J]. Micromachines, 2022, 13(7): 1068.
7
LI N, CHEN W, CHEN G X, et al. Low-cost, sustainable, and environmentally sound cellulose absorbent with high efficiency for collecting methane bubbles from seawater[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6370- 6377.
8
BAFFOU G, QUIDANT R. Nanoplasmonics for chemistry[J]. Chemical Society Reviews, 2014, 43(11): 3898- 3907.
9
CHRISTOPHER P, XIN H L, LINIC S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures[J]. Nature Chemistry, 2011, 3(6): 467- 472.
10
REN G H, ZHOU M, HU P J, et al. Bubble-water/catalyst triphase interface microenvironment accelerates photocatalytic OER via optimizing semi-hydrophobic OH radical[J]. Nature Communications, 2024, 15(1): 2346.
11
KUSAKA R, NIHONYANAGI S, TAHARA T. The photochemical reaction of phenol becomes ultrafast at the air-water interface[J]. Nature Chemistry, 2021, 13(4): 306- 311.
12
PARK S, LIU L H, DEMIRKIR Ç, et al. Solutal marangoni effect determines bubble dynamics during electrocatalytic hydrogen evolution[J]. Nature Chemistry, 2023, 15(11): 1532- 1540.
13
杨勇, 张钊, 王东亮, 等. 基于CO2加氢耦合甲苯甲基化选择催化的PX生产工艺对比[J]. 清华大学学报(自然科学版), 2024, 64(3): 538- 544.
YANG Y, ZHANG Z, WANG D L, et al. Production technology of p-xylene production by toluene methylation with selective carbon dioxide hydrogenation[J]. Journal of Tsinghua University (Science and Technology), 2024, 64(3): 538- 544.
14
ZHANG C H, CAO M Y, MA H Y, et al. Morphology-control strategy of the superhydrophobic poly(methyl methacrylate) surface for efficient bubble adhesion and wastewater remediation[J]. Advanced Functional Materials, 2017, 27(43): 1702020.
15
NING R S, YU S L, LI L, et al. Micro and nanobubbles-assisted advanced oxidation processes for water decontamination: The importance of interface reactions[J]. Water Research, 2024, 265, 122295.
16
MIKLOS D B, REMY C, JEKEL M, et al. Evaluation of advanced oxidation processes for water and wastewater treatment-a critical review[J]. Water Research, 2018, 139, 118- 131.
17
AO X W, ELORANTA J, HUANG C H, et al. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review[J]. Water Research, 2021, 188, 116479.
18
WANG X L, LI P, NING R S, et al. Mechanisms on stability of bulk nanobubble and relevant applications: A review[J]. Journal of Cleaner Production, 2023, 426, 139153.
19
WANG Z, WANG B, WENG D, et al. Influence of entrapped gas morphology at liquid-solid interface on underwater drag reduction effect[J]. Physics of Fluids, 2021, 33(12): 122111.
20
DONG Z Q, LEVKIN P A. 3D Microprinting of super-repellent microstructures: recent developments, challenges, and opportunities[J]. Advanced Functional Materials, 2023, 33(39): 2213916.
21
YAO X, YANG Y, LI G Q, et al. Enhancing gas film stability by alternating superhydrophobic and hydrophobic surfaces for stable drag reduction[J]. Applied Physics Letters, 2024, 124(17): 171603.
22
张鹏, 张彦如, 张福建, 等. 纳米限域Couette流边界气泡减阻机理[J]. 物理学报, 2024, 73(15): 154701.
ZHANG P, ZHANG Y R, ZHANG F J, et al. Mechanism of boundary bubble drag reduction of Couette flow in nano-confined domain[J]. Acta Physica Sinica, 2024, 73(15): 154701.
23
秦世杰, 季盛, 孙帅, 等. 船舶气体润滑减阻应用现状及展望[J]. 中国舰船研究, 2023, 18(6): 1- 10.
QIN S J, JI S, SUN S, et al. Current state and prospects on applications of ship drag reduction using air lubrication[J]. Chinese Journal of Ship Research, 2023, 18(6): 1- 10.
24
YONG J L, CHEN F, FANG Y, et al. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti-or capturing bubbles[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39863- 39871.
25
TAN Y L, HU B R, CHU Z Y, et al. Bioinspired superhydrophobic papillae with tunable adhesive force and ultralarge liquid capacity for microdroplet manipulation[J]. Advanced Functional Materials, 2019, 29(15): 1900266.
26
XIANG Y L, HUANG S L, HUANG T Y, et al. Superrepellency of underwater hierarchical structures on Salvinia leaf[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(5): 2282- 2287.
27
SPEICHERMANN-J?GEL L, DULLENKOPF-BECK S, DROLL R, et al. Stable air retention under water on artificial salvinia surfaces enabled by the air spring effect: the importance of geometrical and surface-energy barriers, and of the air spring height[J]. Advanced Materials Interfaces, 2024, 2400400
28
ZHANG J L, HAN Y C. Shape-gradient composite surfaces: water droplets move uphill[J]. Langmuir, 2007, 23(11): 6136- 6141.
29
DANIEL S, CHAUDHURY M K, CHEN J C. Fast drop movements resulting from the phase change on a gradient surface[J]. Science, 2001, 291(5504): 633- 636.
30
ZHENG Y M, BAI H, HUANG Z B, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640- 643.
31
TIAN X L, CHEN Y, ZHENG Y M, et al. Controlling water capture of bioinspired fibers with hump structures[J]. Advanced Materials, 2011, 23(46): 5486- 5491.
32
BAI F, WU J T, GONG G M, et al. Biomimetic "cactus spine" with hierarchical groove structure for efficient fog collection[J]. Advanced Science, 2015, 2(7): 1500047.
33
LIN F Y, WO K Y, FAN X J, et al. Directional transport of underwater bubbles on solid substrates: principles and applications[J]. ACS Applied Materials & Interfaces, 2023, 15(8): 10325- 10340.
34
XIAO X, ZHANG C H, MA H Y, et al. Bioinspired slippery cone for controllable manipulation of gas bubbles in low-surface-tension environment[J]. ACS Nano, 2019, 13(4): 4083- 4090.
35
ZHANG K T, CHEN H W, RAN T, et al. High-efficient fog harvest from a synergistic effect of coupling hierarchical structures[J]. ACS Applied Materials & Interfaces, 2022, 14(29): 33993- 34001.
36
YU Z H, ZHU T X, ZHANG J C, et al. Fog harvesting devices inspired from single to multiple creatures: current progress and future perspective[J]. Advanced Functional Materials, 2022, 32(26): 2200359.
37
WANG X S, BAI H Y, LI Z, et al. Designing a slippery/superaerophobic hierarchical open channel for reliable and versatile underwater gas delivery[J]. Materials Horizons, 2023, 10(9): 3351- 3359.
38
WU L S, LIU P, WANG Q Y, et al. Droplet manipulation on lubricant self-mediating slippery pdms films[J]. ACS Applied Materials & Interfaces, 2023, 15(41): 48764- 48770.
39
XIE D D, SUN Y N, WU Y J, et al. Engineered switchable-wettability surfaces for multi-path directional transportation of droplets and subaqueous bubbles[J]. Advanced Materials, 2023, 35(9): 2208645.
40
DAI X, SI W, LIU Y F, et al. Bubble unidirectional transportation on multipath aerophilic surfaces by adjusting the surface microstructure[J]. ACS Applied Materials & Interfaces, 2024, 16(9): 11984- 11996.
41
HE S P, LI Z J, YU A H, et al. Underwater bubble manipulation on surfaces with patterned regions with infused lubricants[J]. ACS Applied Materials & Interfaces, 2024, 16(11): 14275- 14287.
42
MA R, WANG J M, YANG Z J, et al. Bioinspired gas bubble spontaneous and directional transportation effects in an aqueous medium[J]. Advanced Materials, 2015, 27(14): 2384- 2389.
43
MA H Y, CAO M Y, ZHANG C H, et al. Directional and continuous transport of gas bubbles on superaerophilic geometry-gradient surfaces in aqueous environments[J]. Advanced Functional Materials, 2018, 28(7): 1705091.
44
ZHU S W, BIAN Y C, WU T, et al. Spontaneous and unidirectional transportation of underwater bubbles on superhydrophobic dual rails[J]. Applied Physics Letters, 2020, 116(9): 093706.
45
LIU Y, ZHANG H, ZHU Y J, et al. Bionic jaw-like micro one-way valve for rapid and long-distance water droplet unidirectional spreading[J]. Nano Letters, 2023, 23(12): 5696- 5704.
46
XIAO X, LI S K, ZHU X D, et al. Bioinspired two-dimensional structure with asymmetric wettability barriers for unidirectional and long-distance gas bubble delivery underwater[J]. Nano Letters, 2021, 21(5): 2117- 2123.
47
XU W W, LU Z Y, SUN X M, et al. Superwetting electrodes for gas-involving electrocatalysis[J]. Accounts of Chemical Research, 2018, 51(7): 1590- 1598.
48
YU C M, ZHANG P P, WANG J M, et al. Superwettability of gas bubbles and its application: from bioinspiration to advanced materials[J]. Advanced Materials, 2017, 29(45): 1703053.
49
LIU D N, WANG Y X, CHEN W, et al. Bubble manipulation mediated by external stimuli: From bioinspired design to potential applications[J]. Nano Today, 2024, 55, 102177.
50
WANG S P, ZHANG A M, LIU Y L, et al. Bubble dynamics and its applications[J]. Journal of Hydrodynamics, 2018, 30(6): 975- 991.
51
WEIJS J H, SNOEIJER J H, LOHSE D. Formation of surface nanobubbles and the universality of their contact angles: a molecular dynamics approach[J]. Physical Review Letters, 2012, 108(10): 104501.
52
LI C L, WANG S P, ZHANG A M, et al. Dynamic behavior of two neighboring nanobubbles induced by various gas-liquid-solid interactions[J]. Physical Review Fluids, 2018, 3(12): 123604.
53
ZHANG H G, ZHANG X R. Size dependence of bubble wetting on surfaces: breakdown of contact angle match between small sized bubbles and droplets[J]. Nanoscale, 2019, 11(6): 2823- 2828.
54
王宗旭, 李紫欣, 白璐, 等. 固/液界面纳米气泡形成及稳定性研究进展[J]. 化工学报, 2021, 72(7): 3466- 3477.
WANG Z X, LI Z X, BAI L, et al. Formation and stability of nanobubble at solid/liquid interface[J]. CIESC Journal, 2021, 72(7): 3466- 3477.
55
WEON B M, JE J H. Coalescence preference depends on size inequality[J]. Physical Review Letters, 2012, 108(22): 224501.
56
HUO J L, BAI X, YONG J L, et al. How to adjust bubble's adhesion on solid in aqueous media: Femtosecond laser-ablated patterned shape-memory polymer surfaces to achieve bubble multi-manipulation[J]. Chemical Engineering Journal, 2021, 414, 128694.
57
YANG S, YIN K, DONG X R, et al. Laser structuring of underwater bubble-repellent surface[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(12): 8381- 8385.
58
ZHAN D Y, GUO Z G. Overview of the design of bionic fine hierarchical structures for fog collection[J]. Materials Horizons, 2023, 10(11): 4827- 4856.
59
SONG Y Y, ZHANG X, YANG J L, et al. Ultrafast sorption of micro-oil droplets within water by superhydrophobic-superoleophilic conical micro-arrays[J]. Separation and Purification Technology, 2023, 315, 123651.
60
CASSIE A B D, BAXTER S. Large contact angles of plant and animal surfaces[J]. Nature, 1945, 155(3923): 21- 22.
61
WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988- 994.
62
GAO X, ZHANG F J, ZHANG Z Q, et al. Ultrahigh efficient collection of underwater bubbles by high adsorption and transport, coalescence, and collection integrating a conical arrayed surface[J]. ACS Applied Materials & Interfaces, 2023, 15(46): 54119- 54128.
63
YIN K, YANG S, DONG X R, et al. Femtosecond laser fabrication of shape-gradient platform: Underwater bubbles continuous self-driven and unidirectional transportation[J]. Applied Surface Science, 2019, 471, 999- 1004.
64
XUE X Z, WANG R X, LAN L W, et al. Reliable manipulation of gas bubble size on superaerophilic cones in aqueous media[J]. ACS Applied Materials & Interfaces, 2018, 10(5): 5099- 5106.
65
XUE X Z, YU C M, WANG J M, et al. Superhydrophobic cones for continuous collection and directional transportation of CO2 microbubbles in CO2 supersaturated solutions[J]. ACS Nano, 2016, 10(12): 10887- 10893.
66
PEÑAS-LÓPEZ P, PARRALES M A, RODRÍGUEZ-RODRÍGUEZ J. Dissolution of a spherical cap bubble adhered to a flat surface in air-saturated water[J]. Journal of Fluid Mechanics, 2015, 775, 53- 76.
67
ZAWALA J, KRASOWSKA M, DABROS T, et al. Influence of bubble kinetic energy on its bouncing during collisions with various interfaces[J]. The Canadian Journal of Chemical Engineering, 2007, 85(5): 669- 678.
68
ZENIT R, LEGENDRE D. The coefficient of restitution for air bubbles colliding against solid walls in viscous liquids[J]. Physics of Fluids, 2009, 21(8): 083306.
69
ZAWALA J, MALYSA K. Influence of the impact velocity and size of the film formed on bubble coalescence time at water surface[J]. Langmuir, 2011, 27(6): 2250- 2257.
70
MANICA R, KLASEBOER E, CHAN D Y C. Force balance model for bubble rise, impact, and bounce from solid surfaces[J]. Langmuir, 2015, 31(24): 6763- 6772.
71
GUPTA S. Bubble floatation, burst, drainage, and droplet release characteristics on a free surface: A review[J]. Physics of Fluids, 2023, 35(4): 041302.
72
WONG W S Y, NAGA A, ARMSTRONG T, et al. Designing plastrons for underwater bubble capture: from model microstructures to stochastic nanostructures[J]. Advanced Science, 2024, 11(33): 2403366.
73
RAPOPORT L, EMMERICH T, VARANASI K K. Capturing bubbles and preventing foam using aerophilic surfaces[J]. Advanced Materials Interfaces, 2020, 7(6): 1901599.
74
YONG J L, SINGH S C, ZHAN Z B, et al. Substrate-independent, fast, and reversible switching between underwater superaerophobicity and aerophilicity on the femtosecond laser-induced superhydro-phobic surfaces for selectively repelling or capturing bubbles in water[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8667- 8675.
75
QIAO S, CAI C J, CHEN W X, et al. Control of the shape of bubble growth on underwater substrates with different sizes of superhydrophobic circles[J]. Physics of Fluids, 2022, 34(6): 067110.
76
YANG L L, CHEN X D, HUANG C Y, et al. A review of gas-liquid separation technologies: Separation mechanism, application scope, research status, and development prospects[J]. Chemical Engineering Research and Design, 2024, 201, 257- 274.
77
黄锟腾, 陈健勇, 陈颖, 等. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(增刊1): 30- 41.
HUANG K T, CHEN J Y, CHEN Y, et al. Research status of vapor-liquid separation technology[J]. CIESC Journal, 2021, 72(S1): 30- 41.
78
JIA J G, ZHU Z X, CHEN H, et al. Full life circle of micro-nano bubbles: Generation, characterization and applications[J]. Chemical Engineering Journal, 2023, 471, 144621.
79
原恺薇, 王兴亚. 纳米气泡制备和检测方法研究进展[J]. 净水技术, 2021, 40(2): 53- 66.
YUAN K W, WANG X Y. Research progress on the preparation and determination of nanobubbles[J]. Water Purification Technology, 2021, 40(2): 53- 66.
80
WANG H N, YANG W Q, YAN X K, et al. Regulation of bubble size in flotation: A review[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104070.
81
XING Y W, GUI X H, PAN L, et al. Recent experimental advances for understanding bubble-particle attachment in flotation[J]. Advances in Colloid and Interface Science, 2017, 246, 105- 132.
82
JUNG M U, KIM Y C, BOURNIVAL G, et al. Industrial application of microbubble generation methods for recovering fine particles through froth flotation: A review of the state-of-the-art and perspectives[J]. Advances in Colloid and Interface Science, 2023, 322, 103047.
83
LIU X Y, GUO H, DING S H, et al. Bubble-particle detachment behavior during bubble coalescence: Role of bubble size[J]. Powder Technology, 2024, 434, 119347.
84
ZHANG P P, ZHANG J J, XUE Z X, et al. Reliable manipulation of gas bubbles by regulating interfacial morphologies and chemical components[J]. Materials Horizons, 2017, 4(4): 665- 672.
85
ZHANG J K, DONG F Y, WANG C Q, et al. Integrated bundle electrode with wettability-gradient copper cones inducing continuous generation, directional transport, and efficient collection of H2 bubbles[J]. ACS Applied Materials & Interfaces, 2021, 13(27): 32435- 32441.
86
GAO J, SUN D Y, LI Z, et al. Orientation-controlled ultralong assembly of janus particles induced by bubble-driven instant quasi-1D interfaces[J]. Journal of the American Chemical Society, 2023, 145(4): 2404- 2413.
87
SALMEAN C, QIU H H. Flow boiling heat transfer enhancement using tuned geometrical contact-line pinning[J]. ACS Applied Materials & Interfaces, 2023, 15(19): 23844- 23859.
88
XU R X, XU X Y, HE M H, et al. Controllable manipulation of bubbles in water by using underwater superaerophobic graphene-oxide/gold-nanoparticle composite surfaces[J]. Nanoscale, 2018, 10(1): 231- 238.
89
DONG M, TANG Z F, HE X D, et al. Direct observation of redox-induced bubble generation and nanopore formation dynamics in controlled dielectric breakdown[J]. ACS Applied Electronic Materials, 2020, 2(9): 2954- 2960.
90
KIBAR A, OZBAY R, SARSHAR M A, et al. Bubble movement on inclined hydrophobic surfaces[J]. Langmuir, 2017, 33(43): 12016- 12027.
91
WU C J, CHANG C C, SHENG Y J, et al. Extraordinarily rapid rise of tiny bubbles sliding beneath superhydrophobic surfaces[J]. Langmuir, 2017, 33(5): 1326- 1331.
92
ZHUANG K, YANG X L, HUANG W, et al. Efficient bubble transport on bioinspired topological ultraslippery surfaces[J]. ACS Applied Materials & Interfaces, 2021, 13(51): 61780- 61788.
93
YU C M, ZHU X B, LI K, et al. Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface[J]. Advanced Functional Materials, 2017, 27(29): 1701605.
94
SHI D C, CHEN Y, YAO Y, et al. Ladderlike conical micropillars facilitating underwater gas-bubble manipulation in an aqueous environment[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 42437- 42445.
95
TAHZIBI H, AZIZIAN S, SZUNERITS S, et al. Fast capture, collection, and targeted transfer of underwater gas bubbles using janus-faced carbon cloth prepared by a novel and simple strategy[J]. ACS Applied Materials & Interfaces, 2022, 14(39): 45013- 45024.
96
XU B J, WANG Q B, MENG Q A, et al. In-Air bubble phobicity and bubble philicity depending on the interfacial air cushion: toward bubbles manipulation using superhydrophilic substrates[J]. Advanced Functional Materials, 2019, 29(20): 1900487.
97
FENG W, BHUSHAN B. Spontaneous transport of air bubbles on bioinspired superhydrophilic triangular patterns[J]. Journal of Colloid and Interface Science, 2020, 575, 399- 405.
98
LI W J, ZHANG J J, XUE Z X, et al. Spontaneous and directional bubble transport on porous copper wires with complex shapes in aqueous media[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 3076- 3081.
99
ZHANG C H, XIAO X, ZHANG Y H, et al. Bioinspired anisotropic slippery cilia for stiffness-controllable bubble transport[J]. ACS Nano, 2022, 16(6): 9348- 9358.
100
ZHANG Z Q, GUO X F, TANG H Y, et al. Unidirectional self-driving liquid droplet transport on a monolayer graphene-covered textured substrate[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28562- 28570.
101
WANG X, JIA Z H. Dynamics of underwater gas bubbles impact on a ratchet with gradient inclination[J]. Applied Surface Science, 2019, 475, 598- 605.
102
LOU X D, HUANG Y, YANG X, et al. External stimuli responsive liquid‐infused surfaces switching between slippery and nonslippery states: fabrications and applications[J]. Advanced Functional Materials, 2020, 30(10): 1901130.
103
ZHANG W, WANG J F, SU Q L, et al. Polarization motion of bubbles in a non-uniform electric field[J]. Chemical Engineering Journal, 2023, 455, 140767.
104
MEI X H, YUAN S, ZHAO C F, et al. Measuring three-dimensional bubble dynamics for hydrogen production via water electrolysis[J]. Physics of Fluids, 2023, 35(12): 123338.
105
ZHANG C H, TENG C, GUO S H, et al. Superaerophilic/Superaerophobic NiFe-LDHs Electrode for Enhancing Overall Water Splitting in Alkaline Media[J]. Nano Letters, 2024, 24(6): 1959- 1966.
106
BASHKATOV A, YANG X G, MUTSCHKE G, et al. Dynamics of single hydrogen bubbles at Pt microelectrodes in microgravity[J]. Physical Chemistry Chemical Physics, 2021, 23(20): 11818- 11830.
107
CHANDRAN P, BAKSHI S, CHATTERJEE D. Study on the characteristics of hydrogen bubble formation and its transport during electrolysis of water[J]. Chemical Engineering Science, 2015, 138, 99- 109.
108
ZHAN S Q, YUAN R, HUANG Y J, et al. Numerical simulation of hydrogen bubble growth and mass transfer on horizontal microelectrode surface under electrode-normal magnetic field[J]. Physics of Fluids, 2022, 34(11): 112120.
109
WANG Q G, ZHANG G, WANG C, et al. The electrically induced bubble behaviors considering different bubble injection directions[J]. International Journal of Heat and Mass Transfer, 2017, 104, 729- 742.
110
WANG J F, HAN J F, WU T Y, et al. Bubble deformation and breakup in a non-uniform electric field[J]. Chemical Engineering Science, 2024, 287, 119741.
111
YAN R, PHAM R, CHEN C L. Activating bubble's escape, coalescence, and departure under an electric field effect[J]. Langmuir, 2020, 36(51): 15558- 15571.
112
INBAOLI A, SUJITH KUMAR C S, JAYARAJ S. A review on techniques to alter the bubble dynamics in pool boiling[J]. Applied Thermal Engineering, 2022, 214, 118805.
113
LI M X, XIE P P, YU L F, et al. Bubble engineering on micro-/nanostructured electrodes for water splitting[J]. ACS Nano, 2023, 17(23): 23299- 23316.
114
YAN Y F, GUO Z Y, ZHANG X F, et al. Electrowetting-induced stiction switch of a microstructured wire surface for unidirectional droplet and bubble motion[J]. Advanced Functional Materials, 2018, 28(49): 1800775.
115
ZAHIRI B, SOW P K, KUNG C H, et al. Active control over the wettability from superhydrophobic to superhydrophilic by electrochemically altering the oxidation state in a low voltage range[J]. Advanced Materials Interfaces, 2017, 4(12): 1700121.
116
LI Y, LI J R, LIU L W, et al. Switchable wettability and adhesion of micro/nanostructured elastomer surface via electric field for dynamic liquid droplet manipulation[J]. Advanced Science, 2020, 7(18): 2000772.
117
JIANG S J, WU D, LI J W, et al. Magnetically responsive manipulation of droplets and bubbles[J]. Droplet, 2024, 3(2): e117.
118
CHEN W, ZHANG X L, ZHAO S Y, et al. Slippery magnetic track inducing droplet and bubble manipulation[J]. Chemical Communications, 2022, 58(8): 1207- 1210.
119
LIU C, HUANG J X, GUO Z G, et al. A magnetic responsive composite surface for high-performance droplet and bubble manipulation[J]. Chemical Communications, 2022, 58(79): 11119- 11122.
120
PAN W L, GAO C Y, ZHU C, et al. Kinematic behavior of an untethered, small-scale hydrogel-based soft robot in response to magneto-thermal stimuli[J]. Biomimetics, 2023, 8(4): 379.
121
XU L, YANG L, LI T, et al. Deformation and locomotion of untethered small-scale magnetic soft robotic turtle with programmable magnetization[J]. Journal of Bionic Engineering, 2024, 21(2): 754- 763.
122
WANG J, ZHU Z X, LIU P F, et al. Magneto-responsive shutter for on-demand droplet manipulation[J]. Advanced Science, 2021, 8(23): 2103182.
123
SU Y H, LI Z C, ZHU S W, et al. Biomimetic mechanoswitchable interfaces for high-performance spatial gas bubble maneuvering[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 43769- 43776.
124
WANG L, ZHANG C C, WEI Z J, et al. Bioinspired fluoride-free magnetic microcilia arrays for anti-icing and multidimensional droplet manipulation[J]. ACS Nano, 2024, 18(1): 526- 538.
125
GUO P, WANG Z B, HENG L P, et al. Magnetocontrollable droplet and bubble manipulation on a stable amphibious slippery gel surface[J]. Advanced Functional Materials, 2019, 29(11): 1808717.
126
ZHU S W, BIAN Y C, WU T, et al. High performance bubble manipulation on ferrofluid-infused laser-ablated microstructured surfaces[J]. Nano Letters, 2020, 20(7): 5513- 5521.
127
HAN K, YONG K. Overcoming limitations in surface geometry-driven bubble transport: bidirectional and unrestricted movement of an underwater gas bubble using a magnetocontrollable nonwetting surface[J]. Advanced Functional Materials, 2021, 31(26): 2101970.
128
BEN S, NING Y Z, ZHAO Z H, et al. Underwater directional and continuous manipulation of gas bubbles on superaerophobic magnetically responsive microcilia array[J]. Advanced Functional Materials, 2022, 32(28): 2113374.
129
CHEN C, YAO H, JIAO Y L, et al. Magnetic-actuated robot enables high-performance underwater bubble maneuvering on laser-textured biomimetic slippery surfaces[J]. Langmuir, 2022, 38(6): 2174- 2184.
130
CHEN X G, HOU L K, YIN Z Q, et al. NIR light-triggered core-coalescence of double-emulsion drops for micro-reactions[J]. Chemical Engineering Journal, 2023, 454, 140050.
131
JIAO Y L, LI C Z, WU S Z, et al. Switchable underwater bubble wettability on laser-induced titanium multiscale micro-/nanostructures by vertically crossed scanning[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16867- 16873.
132
ZONG C Y, HU M, AZHAR U, et al. Smart copolymer-functionalized flexible surfaces with photoswitchable wettability: from superhydrophobicity with "rose petal" effect to superhydrophilicity[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25436- 25444.
133
WU S Z, WANG Y, CHEN C, et al. Carbon black-based NIR-responsive superhydrophobic shape memory microplate array with switchable adhesion for droplets and bubbles manipulation[J]. Applied Physics Letters, 2021, 119(18): 181601.
134
YANG X Y, JIN H B, TAO X F, et al. Photo-switchable smart superhydrophobic surface with controllable superwettability[J]. Polymer Chemistry, 2021, 12(37): 5303- 5309.
135
LI H N, YANG Y J, ZHU X, et al. Light fueled manipulation of bubble motion against buoyancy via photosensitive substrate[J]. Advanced Functional Materials, 2023, 33(24): 2300308.
136
DAI X, GUO Z G, LIU W M. Ultraviolet-driven janus foams with wetting gradients: unidirectional penetration control for underwater bubbles[J]. ACS Applied Materials & Interfaces, 2022, 14(37): 42734- 42743.
137
XI X Y, CEGLA F B, LOWE M, et al. Study on the bubble transport mechanism in an acoustic standing wave field[J]. Ultrasonics, 2011, 51(8): 1014- 1025.
138
XI X Y, CEGLA F, METTIN R, et al. Collective bubble dynamics near a surface in a weak acoustic standing wave field[J]. The Journal of the Acoustical Society of America, 2012, 132(1): 37- 47.
139
MA G X, XIA W C, XIE G Y, et al. Ultrasound-assisted detachment behavior of glass beads and fragments from a fixed bubble[J]. Powder Technology, 2019, 355, 611- 616.
140
XIAO J, ZHANG J X. Experimental investigation on flow boiling bubble motion under ultrasonic field in vertical minichannel by using bubble tracking algorithm[J]. Ultrasonics Sonochemistry, 2023, 95, 106365.
141
JI X L, ZHONG W X, LIU K Q, et al. Extraordinary stability of surfactant-free bubbles suspended in ultrasound[J]. Droplet, 2024, 3(2): e119.
142
DENG J J, YANG R F, LU H Q. Dynamics of nonspherical bubble in compressible liquid under the coupling effect of ultrasound and electrostatic field[J]. Ultrasonics Sonochemistry, 2021, 71, 105371.
143
XU J R, ZHANG X H, ZHANG G J, et al. Flow and heat transfer characteristics of high temperature continuous rising bubbles[J]. Thermal Science, 2022, 26(4B): 3317- 3324.
144
DOCKAR D, GIBELLI L, BORG M K. Thermal oscillations of nanobubbles[J]. Nano Letters, 2023, 23(23): 10841- 10847.
145
JIANG Y, MANSFELD U, FANG L, et al. Temperature-induced evolution of microstructures on poly[ethylene-co-(vinyl acetate)] substrates switches their underwater wettability[J]. Materials & Design, 2019, 163, 107530.
146
WANG R X, WANG M C, WANG C, et al. Thermally driven interfacial switch between adhesion and antiadhesion on gas bubbles in aqueous media[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 37365- 37370.
147
YU C M, CAO M Y, DONG Z C, et al. Aerophilic electrode with cone shape for continuous generation and efficient collection of H2 bubbles[J]. Advanced Functional Materials, 2016, 26(37): 6830- 6835.
148
PEI C T, PENG Y, ZHANG Y, et al. An integrated janus mesh: underwater bubble antibuoyancy unidirectional penetration[J]. ACS Nano, 2018, 12(6): 5489- 5494.
149
GAO A L, FAN H Q, ZHANG G F, et al. Facile construction of gas diode membrane towards in situ gas consumption via coupling two chemical reactions[J]. Journal of Colloid and Interface Science, 2019, 557, 282- 290.
150
YONG J L, CHEN F, LI W T, et al. Underwater superaerophobic and superaerophilic nanoneedles-structured meshes for water/bubbles separation: removing or collecting gas bubbles in water[J]. Global Challenges, 2018, 2(4): 1700133.
151
NING Y Z, ZHANG D, BEN S, et al. An innovative design by single-layer superaerophobic mesh: continuous underwater bubble antibuoyancy collection and transportation[J]. Advanced Functional Materials, 2020, 30(7): 1907027.
152
ZHANG C H, ZHANG B, MA H Y, et al. Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment[J]. ACS Nano, 2018, 12(2): 2048- 2055.
153
ZHANG F J, WANG Z Y, LIU Z, et al. Cross-hatch textured cone enables Dual-Mode water transport and collection[J]. Chemical Engineering Journal, 2023, 478, 147336.
154
SONG Y Y, YANG J L, ZHANG X, et al. Temperature-responsive peristome-structured smart surface for the unidirectional controllable motion of large droplets[J]. Microsystems & Nanoengineering, 2023, 9, 119.
155
WANG H, FU H, TIAN L M, et al. Salvinia-inspired biomimetic antifouling film with bubble shielding function[J]. Progress in Organic Coatings, 2024, 186, 107941.
156
WANG H W, WANG K Y, LIU G H. Drag reduction by gas lubrication with bubbles[J]. Ocean Engineering, 2022, 258, 111833.
157
HU H B, WANG D Z, REN F, et al. A comparative analysis of the effective and local slip lengths for liquid flows over a trapped nanobubble[J]. International Journal of Multiphase Flow, 2018, 104, 166- 173.
158
CAO Y L, LIU X C, ZHANG L P, et al. Water impalement resistance and drag reduction of the superhydrophobic surface with hydrophilic strips[J]. ACS Applied Materials & Interfaces, 2024, 16(13): 16973- 16982.
159
HU H B, Wen J, BAO L Y, et al. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips[J]. Science Advances, 2017, 3(9): e1603288.
160
CHEN Q H, ZHANG C Q, CAI Y K, et al. Periodically oriented superhydrophobic microstructures prepared by laser ablation-chemical etching process for drag reduction[J]. Applied Surface Science, 2023, 615, 156403.
161
YAN D F, LIN J Y, ZHANG B Z, et al. Drag reduction and antifouling of a spontaneous fast moving air film[J]. Journal of Materials Chemistry A, 2024, 12(30): 19268- 19276.
162
CUI X X, LIU X L, CHEN H W, et al. Functionalized super-hydrophobic nanocomposite surface integrating with anti-icing and drag reduction properties[J]. Chemical Engineering Journal, 2024, 499, 156093.
163
YANG W T, ZHONG W, JIA W D, et al. Study on atomization mechanisms and spray fragmentation characteristics of water and emulsion butachlor[J]. Frontiers in Plant Science, 2023, 14, 1265013.
164
YANG W T, JIA W D, OU M X, et al. Effect of physical properties of an emulsion pesticide on the atomisation process and the spatial distribution of droplet size[J]. Agriculture, 2022, 12(7): 949.
165
ZHANG Z Q, LI S F, MI B X, et al. Surface slip on rotating graphene membrane enables the temporal selectivity that breaks the permeability-selectivity trade-off[J]. Science Advances, 2020, 6(34): eaba9471.
166
GAO J, WU Y C, ZHANG Z Y, et al. Achieving amorphous micro-nano superhydrophobic structures on quartz glass with a PTFE coating by laser back ablation[J]. Optics & Laser Technology, 2022, 149, 107927.
167
LIANG H Y, CHEN X J, BU Y F, et al. Macroscopic superlubricity of potassium hydroxide solution achieved by incorporating in-situ released graphene from friction pairs[J]. Friction, 2023, 11(4): 567- 579.
168
LIU M Q, LIANG H Y, CHEN X J, et al. Asymmetric contact synergy of unequal-sized soft and hard clusters in highly concentrated ZnCl2 for heterogeneous superlubricants[J]. Tribology Letters, 2024, 72(2): 41.
169
HUA X J, TIAN Z X, XIE X, ET AL. Tribological behavior and abrasion resistance mechanism of laser micro-bulge texturing surface under full oil lubrication[J]. Tribology Transactions, 2020, 63(4): 726- 735.

基金

国家自然科学基金面上项目(12272151)
国家自然科学基金重大项目(92248301)
江苏省研究生科研创新计划(KYCX23_3724)

版权

版权所有,未经授权,不得转载。
PDF(25992 KB)

Accesses

Citation

Detail

段落导航
相关文章

/