高温热管技术在空间核能热能转换系统中的应用及展望

李欣, 袁达忠, 陈民, 杜宝瑞

清华大学学报(自然科学版) ›› 2024, Vol. 64 ›› Issue (10) : 1818-1838.

PDF(10132 KB)
PDF(10132 KB)
清华大学学报(自然科学版) ›› 2024, Vol. 64 ›› Issue (10) : 1818-1838. DOI: 10.16511/j.cnki.qhdxxb.2024.22.040
核能与新能源技术

高温热管技术在空间核能热能转换系统中的应用及展望

  • 李欣1,2, 袁达忠1,2, 陈民3, 杜宝瑞1,2
作者信息 +

Application and research progress of high-temperature heat pipe technology in space nuclear power systems for thermal energy conversion

  • LI Xin1,2, YUAN Dazhong1,2, CHEN Min3, DU Baorui1,2
Author information +
文章历史 +

摘要

随着未来空间多元化任务的需求提升, 空间核电源中核能热能转换系统的空间受限、 长距离无动力循环、 无重力环境等极限传热难题凸显。高温热管具有传热热流密度大、 工作温度高、 传热温差小、 自适应能力强等优点, 可作为空间核电源核能热能转换系统的关键核心器件, 应用前景广阔。该文分析了当前空间核电源核能热能转换系统存在的极限传热难题, 讨论了高温热管技术应用于空间核能热能转换系统的优势和挑战, 从高温热管内工质流动传热机理、 高温热管的冷态启动、 稳态传热、 传热极限和寿命失效以及异形高温热管设计和研制等方面进行了综述, 总结了高温热管技术在空间核能热能转换系统中的研究现状和最新应用进展, 并给出合理建议。适应极限传热的高温热管工质流动和传热机制、 异形高温热管的研制和热力结构耦合传热实验验证、 空间核能热能转换与用能之间的匹配和优化是后续研究的重点方向。

Abstract

[Significance] The increasing demand for diversified space missions necessitates addressing the extreme heat transfer challenges in space nuclear power systems, such as spatial constraints, long-distance unpowered cycles, and zero-gravity environments. Thus, the stable transfer of the substantial heat generated by the reactor core to the energy conversion device is crucial. High-temperature heat pipes, characterized by high heat flux, high operating temperatures, minimal temperature differences in heat transfer, and strong adaptability, are ideal for the key components of nuclear thermal energy conversion in space power systems. Traditional nuclear reactor power systems using coolants are less competitive in space because of their complexity, leakage risk, and stringent material strength requirements. Conversely, space heat-pipe-cooled reactors do not require auxiliary equipment such as high-temperature pumps. The phase change of the working fluid and the diffusive transport of vapor in a high-temperature heat pipe form a natural cycle that transfers heat from the core to the thermoelectric converter, thereby reducing system complexity, enhancing safety and reliability, and thus providing an effective solution for efficient heat transfer and energy conversion in space nuclear power systems. [Progress] The research and development of high-temperature heat pipe technology are pivotal for improving energy conversion efficiency and heat transfer performance in space nuclear power applications. Research on high-temperature heat pipes encompasses working fluid flow and heat transfer mechanisms, model establishment, experimental verification of frozen startup and heat transfer limits, steady-state heat transfer experimental analysis, and failure mechanisms, yielding promising results. As this technology advances, its applications and research in space nuclear thermal energy conversion systems have become more extensive and in-depth. Studies have focused on the startup and safety performance of space nuclear power systems, the coupling performance of high-temperature heat pipes in nuclear thermal energy conversion systems, and the research and design of high-temperature heat pipes in the radiators of space reactors. However, high-temperature heat pipes face challenges in achieving efficient thermal energy transfer and management, structural design of heat pipes and wicks, and adaptability to extreme space environments when applied to space nuclear power systems for thermal energy conversion. In response to these challenges, new research and attempts have been conducted. Studies on heat pipe performance under microgravity conditions have demonstrated their feasibility. In addition, research on shaped high-temperature heat pipes designs more flexible and efficient structures to meet complex heat transfer requirements. Furthermore, studies on additive manufacturing, aerogel insulation, and advanced testing techniques provide theoretical support and a technical foundation for the space application of high-temperature heat pipes. The current research on the space applications of high-temperature heat pipes still has some limitations. Ground-based tests of high-temperature heat pipes have advanced but cannot match the demands of real space scenarios. This mismatch prevents us from knowing their true performance in space reactors. Moreover, studies on the performance of high-temperature heat pipes coupled with nuclear reactors and thermoelectric converters are scarce. Thus, the overall coupling performance is largely unknown. [Conclusions and Prospects] High-temperature heat pipe technology shows promise, but still faces challenges in space applications. Currently, most space heat-pipe-cooled reactors are in the design and feasibility exploration stages. Future research will focus on optimizing high-temperature heat pipe models and their applicability, exploring the heat and mass transfer mechanisms of working fluids in space environments, conducting theoretical research and complex wick design and manufacturing studies for shaped heat pipes, and ensuring reliable coupling of high-temperature heat pipes with other components in space nuclear power systems.

关键词

高温热管 / 空间核电源 / 核能热能中间转换系统 / 极限传热

Key words

high-temperature heat pipe / space nuclear power / nuclear thermal energy intermediate conversion system / extreme heat transfer

引用本文

导出引用
李欣, 袁达忠, 陈民, 杜宝瑞. 高温热管技术在空间核能热能转换系统中的应用及展望[J]. 清华大学学报(自然科学版). 2024, 64(10): 1818-1838 https://doi.org/10.16511/j.cnki.qhdxxb.2024.22.040
LI Xin, YUAN Dazhong, CHEN Min, DU Baorui. Application and research progress of high-temperature heat pipe technology in space nuclear power systems for thermal energy conversion[J]. Journal of Tsinghua University(Science and Technology). 2024, 64(10): 1818-1838 https://doi.org/10.16511/j.cnki.qhdxxb.2024.22.040

参考文献

[1] ANDREYEV P V, BARANOV G D, GRAHAM J, et al. The role of nuclear power and nuclear propulsion in the peaceful exploration of space [M]. Vienna, Austria: International Atomic Energy Agency, 2005.
[2] WALKER K L, TARAU C, ANDERSON W G. High temperature heat pipes for space fission power [C]//Proceedings of the 11th International Energy Conversion Engineering Conference. San Jose, USA: American Institute of Aeronautics and Astronautics, 2013.
[3] EL-GENK M S. Deployment history and design considerations for space reactor power systems [J]. Acta Astronautica, 2009, 64(9-10): 833-849.
[4] ROMANO L F R, RIBEIRO G B. Optimization of a heat pipe-radiator assembly coupled to a recuperated closed Brayton cycle for compact space power plants [J]. Applied Thermal Engineering, 2021, 196: 117355.
[5] XIAO W, LI X Y, LI P J, et al. High-fidelity multi-physics coupling study on advanced heat pipe reactor [J]. Computer Physics Communications, 2022, 270: 108152.
[6] HUANG J L, WANG C L, GUO K L, et al. Heat transfer analysis of heat pipe cooled device with thermoelectric generator for nuclear power application [J]. Nuclear Engineering and Design, 2022, 390: 111652.
[7] ZOHURI B. Heat pipe applications in fission driven nuclear power plants [M]. Cham, Switzerland: Springer, 2019.
[8] 苏光辉, 章静, 王成龙. 核能在未来载人航天中的应用[J]. 载人航天, 2020, 26(1): 1-13. SU G H, ZHANG J, WANG C L. Application of nuclear energy in future manned space flight [J]. Manned Spaceflight, 2020, 26(1): 1-13. (in Chinese)
[9] 余红星, 马誉高, 张卓华, 等. 热管冷却反应堆的兴起和发展[J]. 核动力工程, 2019, 40(4): 1-8. YU H X, MA Y G, ZHANG Z H, et al. Initiation and development of heat pipe cooled reactor [J]. Nuclear Power Engineering, 2019, 40(4): 1-8. (in Chinese)
[10] 薛翔, 王浩明, 王园丁. 国外空间核动力技术发展现状及启示[J]. 中国航天, 2023(11): 23-32. XUE X, WANG H M, WANG Y D. Development status of foreign space nuclear power technology and enlightenment to China [J]. Aerospace China, 2023(11): 23-32. (in Chinese)
[11] 刘祥, 郝祖龙, 牛风雷. 空间核反应堆冷却剂热物性比较分析[J]. 实验室研究与探索, 2021, 40(5): 41-44, 242. LIU X, HAO Z L, NIU F L. Comparative analysis of thermophysical properties of space reactor coolant [J]. Research and Exploration in Laboratory, 2021, 40(5): 41-44, 242. (in Chinese)
[12] 张明, 蔡晓东, 杜青, 等. 核反应堆空间应用研究[J]. 航天器工程, 2013, 22(6): 119-126. ZHANG M, CAI X D, DU Q, et al. Research on nuclear reactor in space application [J]. Spacecraft Engineering, 2013, 22(6): 119-126. (in Chinese)
[13] 吴伟仁, 刘继忠, 赵小津, 等. 空间核反应堆电源研究[J]. 中国科学: 技术科学, 2019, 49(1): 1-12. WU W R, LIU J Z, ZHAO X J, et al. System engineering research and application foreground of space nuclear reactor power generators [J]. Scientia Sinica Technologica, 2019, 49(1): 1-12. (in Chinese)
[14] 张文文, 刘逍, 田文喜, 等. 兆瓦级空间热管反应堆动力系统概念设计[J]. 原子能科学技术, 2017, 51(12): 2160-2164. ZHANG W W, LIU X, TIAN W X, et al. Conceptual design of megawatt class space heat pipe reactor power system [J]. Atomic Energy Science and Technology, 2017, 51(12): 2160-2164. (in Chinese)
[15] KOENIG D R, RANKEN W A, SALMI E W. Heat-pipe reactors for space power applications [J]. Journal of Energy, 1977, 1(4): 237-243.
[16] RANKEN W A. Heat pipe development for the SPAR space power system [M]//REAY D A. Advances in heat pipe technology. New York, USA: Pergamon, 1982: 561-574.
[17] EL-GENK M S. Space nuclear reactor power system concepts with static and dynamic energy conversion [J]. Energy Conversion and Management, 2008, 49(3): 402-411.
[18] EL-GENK M S, TOURNIER J M P. Uses of liquid-metal and water heat pipes in space reactor power systems [J]. Frontiers in Heat Pipes, 2011, 2: 013002.
[19] 胡古, 赵守智. 空间核反应堆电源技术概览[J]. 深空探测学报, 2017, 4(5): 430-443. HU G, ZHAO S Z. Overview of space nuclear reactor power technology [J]. Journal of Deep Space Exploration, 2017, 4(5): 430-443. (in Chinese)
[20] SAMSON J R, CUTTING F M. Thermal management for high performance computing in spaceborne applications [C]//Proceedings of the Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Las Vegas, USA: IEEE, 2000: 247-254.
[21] DEVARAKONDA A, OLMINSKY J. An evaluation of halides and other substances as potential heat pipe fluids [C]//Proceedings of the 2nd International Energy Conversion Engineering Conference. Providence, USA: American Institute of Aeronautics and Astronautics, 2004.
[22] TIAN Z X, WANG C L, GUO K L, et al. A review of liquid metal high temperature heat pipes: Theoretical model, design, and application [J]. International Journal of Heat and Mass Transfer, 2023, 214: 124434.
[23] JOUHARA H, ANASTASOV V, KHAMIS I. Potential of heat pipe technology in nuclear seawater desalination [J]. Desalination, 2009, 249(3): 1055-1061.
[24] FAGHRI A. Heat pipe science and technology [M]. Washington DC, USA: Taylor & Francis, 1995.
[25] ZENG H Y, WANG Y Q, SHI Y X, et al. Highly thermal integrated heat pipe-solid oxide fuel cell [J]. Applied Energy, 2018, 216: 613-619.
[26] SHAFIEIAN A, KHIADANI M, NOSRATI A. A review of latest developments, progress, and applications of heat pipe solar collectors [J]. Renewable and Sustainable Energy Reviews, 2018, 95: 273-304.
[27] FUSARO R, FERRETTO D, VIOLA N, et al. Liquid metals heat-pipe solution for hypersonic air-intake leading edge: Conceptual design, numerical analysis and verification [J]. Acta Astronautica, 2022, 197: 336-352.
[28] MA J, JIANG B, SI-MA W, et al. Deciphering high-efficiency solar-thermochemical energy conversion process of heat pipe reactor for steam methane reforming [J]. Fuel, 2022, 326: 124972.
[29] SINGH R, SINGH OBEROI A, SINGH T. Heat pipes for PEM fuel cell cooling: State of the art review [P]. Materials Today: Proceedings, 2023. https://doi.org/10.1016/j.matpr.2023.01.135.
[30] WANG C J, LI J W, XU B W, et al. Design and thermal performance research of airfoil alkali metal high-temperature heat pipe [J]. Journal of Thermal Science and Engineering Applications, 2023, 15(4): 041006.
[31] JANG J H, FAGHRI A, CHANG W S, et al. Mathematical modeling and analysis of heat pipe start-up from the frozen state [J]. Journal of Heat Transfer, 1990, 112(3): 586-594.
[32] JANG J H. An analysis of startup from the frozen state and transient performance of heat pipes [D]. Atlanta, USA: Georgia Institute of Technology, 1988.
[33] TOURNIER J M, EL-GENK M S. Transient analysis of the startup of a sodium heat pipe from a frozen state [J]. AIP Conference Proceedings, 1996, 361(1): 1121-1128.
[34] TOURNIER J M, EL-GENK M S. An analysis of the startup of a radiatively-cooled sodium heat pipe from a frozen state [R]. Washington DC, USA: National Aeronautics and Space Administration, 1996.
[35] TOURNIER J M, EL-GENK M S. Startup of a horizontal lithium-molybdenum heat pipe from a frozen state [J]. International Journal of Heat and Mass Transfer, 2003, 46(4): 671-685.
[36] YU D L, LIU J, HU C J, et al. Key features and highly effective prediction of complete startup from frozen state for high-temperature heat pipe in heat pipe reactor [J]. Applied Thermal Engineering, 2024, 236: 121766.
[37] BUSSE C A. Theory of the ultimate heat transfer limit of cylindrical heat pipes [J]. International Journal of Heat and Mass Transfer, 1973, 16(1): 169-186.
[38] KEMME J E. Ultimate heat-pipe performance [J]. IEEE Transactions on Electron Devices, 1969, 16(8): 717-723.
[39] 曲伟, 王焕光, 段彦军. 高温及超高温热管的启动特性和传热极限[J]. 工程热物理学报, 2011, 32(8): 1345-1348. QU W, WANG H G, DUAN Y J. Startup characteristics and heat transfer limits of high and super high temperature heat pipes [J]. Journal of Engineering Thermophysics, 2011, 32(8): 1345-1348. (in Chinese)
[40] LIU J S, MOU Y P, LI X B, et al. Numerical study on the characteristics of sodium heat pipes for space application at operation limits [J]. Nuclear Engineering and Design, 2024, 420: 113044.
[41] LEVY E K. Theoretical investigation of heat pipes operating at low vapor pressures [J]. Journal of Engineering for Industry, 1968, 90(4): 547-552.
[42] CHI S W. Heat pipe theory and practice [M]. Washington DC, USA: Hemisphere Publishing Corporation, 1976.
[43] FAGHRI A, THOMAS S. Performance characteristics of a concentric annular heat pipe: Part Ⅰ: Experimental prediction and analysis of the capillary limit [J]. Journal of Heat Transfer, 1989, 111(4): 844-850.
[44] FAGHRI A. Performance characteristics of a concentric annular heat pipe: Part II: Vapor flow analysis [J]. Journal of Heat Transfer, 1989, 111(4): 851-857.
[45] TIEN C L, CHUNG K S. Entrainment limits in heat pipes [J]. AIAA Journal, 1979, 17(6): 643-646.
[46] 张嘉睿, 田智星, 王成龙, 等. 液态金属高温热管传热极限研究[J]. 原子能科学技术, 2022, 56(10): 2024-2031. ZHANG J R, TIAN Z X, WANG C L, et al. Study on heat transfer limitation of liquid metal high-temperature heat pipe [J]. Atomic Energy Science and Technology, 2022, 56(10): 2024-2031. (in Chinese)
[47] NARENDRA BABU N, KAMATH H C. Materials used in heat pipe [J]. Materials Today: Proceedings, 2015, 2(4-5): 1469-1478.
[48] TU S T, ZHANG H, ZHOU W W. Corrosion failures of high temperature heat pipes [J]. Engineering Failure Analysis, 1999, 6(6): 363-370.
[49] MERTINGER V, BENKE M, KISS G, et al. Degradation of a corrosion and heat resistant steel pipe [J]. Engineering Failure Analysis, 2013, 29: 38-44.
[50] EL-GENK M S, TOURNIER J M. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems [J]. Journal of Nuclear Materials, 2005, 340(1): 93-112.
[51] ROSENFELD J H, ERNST D M, LINDEMUTH J E, et al. An overview of long duration sodium heat pipe tests [J]. AIP Conference Proceedings, 2004, 699(1): 140-147.
[52] 涂善东, 张红, 庄骏. 热管设备的强度与寿命[J]. 压力容器, 1997, 14(2): 30-37. TU S D, ZHANG H, ZHUANG J. The strength and life of heat pipe equipment [J]. Pressure Vessel Technology, 1997, 14(2): 30-37. (in Chinese)
[53] HACK N, UNZ S, BECKMANN M. Ceramic heat pipes for high temperature application [J]. Energy Procedia, 2017, 120: 140-148.
[54] WERNER T C, YAN Y Y, KARAYIANNIS T, et al. Medium temperature heat pipes: Applications, challenges and future direction [J]. Applied Thermal Engineering, 2024, 236: 121371.
[55] MITOMI M, NAGANO H. Long-distance loop heat pipe for effective utilization of energy [J]. International Journal of Heat and Mass Transfer, 2014, 77: 777-784.
[56] CHEN H X, GUO Y X, YUAN D Z, et al. Experimental study on frozen startup and heat transfer characteristics of a cesium heat pipe under horizontal state [J]. International Journal of Heat and Mass Transfer, 2022, 183: 122105.
[57] MUELLER C, TSVETKOV P. A review of heat-pipe modeling and simulation approaches in nuclear systems design and analysis [J]. Annals of Nuclear Energy, 2021, 160: 108393.
[58] CAO Y D, FAGHRI A. Transient two-dimensional compressible analysis for high-temperature heat pipes with pulsed heat input [J]. Numerical Heat Transfer, Part A: Applications, 1991, 18(4): 483-502.
[59] TOURNIER J M, EL-GENK M S. HPTAM, a two-dimensional heat pipe transient analysis model, including the startup from a frozen state [R]. Albuquerque, USA: National Aeronautics and Space Administration, 1995.
[60] TIEN C L, ROHANI A R. Analysis of the effects of vapor pressure drop on heat pipe performance [J]. International Journal of Heat and Mass Transfer, 1974, 17(1): 61-67.
[61] 段彦军, 王焕光, 曲伟. 毛细芯热管蒸汽流动特性研究[J]. 工程热物理学报, 2012, 33(6): 997-1001. DUAN Y J, WANG H G, QU W. Study on vapor flow in capillary wick heat pipes [J]. Journal of Engineering Thermophysics, 2012, 33(6): 997-1001. (in Chinese)
[62] YILGOR I, SHI S B. Scaling laws for two-phase flow and heat transfer in high-temperature heat pipes [J]. International Journal of Heat and Mass Transfer, 2022, 189: 122688.
[63] WANG Z T, YE T Z, GUO K L, et al. Molecular dynamics study of the wettability effect on the evaporation of thin liquid sodium film [J]. Nuclear Engineering and Design, 2023, 405: 112183.
[64] YIN L, LIU H P, LIU W Q. Capillary character and evaporation heat transfer in the wicks of high temperature liquid metal heat pipe [J]. Applied Thermal Engineering, 2020, 175: 115284.
[65] 黄庆, 卜建杰, 郑邯勇, 等. 液态锂在金属丝网上的毛细作用[J]. 舰船科学技术, 2007, 29(6): 130-134. HUANG Q, BU J J, ZHENG H Y, et al. The capillarity of liquid lithium on the metal screen [J]. Ship Science and Technology, 2007, 29(6): 130-134. (in Chinese)
[66] 张贲, 王松柏, 魏子亚, 等. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. ZHANG B, WANG S B, WEI Z Y, et al. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. (in Chinese)
[67] ZHANG Z Q, CHAI X M, WANG C L, et al. Numerical investigation on startup characteristics of high temperature heat pipe for nuclear reactor [J]. Nuclear Engineering and Design, 2021, 378: 111180.
[68] GUO Y C, SU Z L, LI Z G, et al. Numerical investigation on the startup performance of high-temperature heat pipes for heat pipe cooled reactor application [J]. Nuclear Science and Techniques, 2021, 32(10): 104.
[69] TIAN Z X, WANG C L, HUANG J L, et al. Code development and analysis on the operation of liquid metal high temperature heat pipes under full condition [J]. Annals of Nuclear Energy, 2021, 160: 108396.
[70] YANG H W, WANG C L, ZHANG D L, et al. Parameter sensitivity study on startup characteristics of high temperature potassium heat pipe [J]. Nuclear Engineering and Design, 2022, 392: 111754.
[71] 田智星, 刘逍, 王成龙, 等. 高温钾热管稳态运行传热特性研究[J]. 原子能科学技术, 2020, 54(10): 1771-1778. TIAN Z X, LIU X, WANG C L, et al. Study on heat transfer performance of high temperature potassium heat pipe at steady state [J]. Atomic Energy Science and Technology, 2020, 54(10): 1771-1778. (in Chinese)
[72] TIAN Z X, ZHANG J R, WANG C L, et al. Experimental evaluation on heat transfer limits of sodium heat pipe with screen mesh for nuclear reactor system [J]. Applied Thermal Engineering, 2022, 209: 118296.
[73] STORM PEDERSEN E. Heat-pipe thermionic reactor concept [J]. Nuclear Engineering, 1967, 12(129): 112-114.
[74] ZHANG W W, ZHANG D L, WANG C L, et al. Conceptual design and analysis of a megawatt power level heat pipe cooled space reactor power system [J]. Annals of Nuclear Energy, 2020, 144: 107576.
[75] RANKEN W A, HOUTS M G. Heat pipe cooled reactors for multi-kilowatt space power supplies [R]. Los Alamos, USA: Los Alamos National Laboratory, 1995.
[76] HOUTS M G, POSTON D I, RANKEN W A. Heatpipe space power and propulsion systems [J]. AIP Conference Proceedings, 1996, 361(1): 1155-1162.
[77] POSTON D I, KAPERNICK R J, GUFFEE R M. Design and analysis of the SAFE-400 space fission reactor [J]. AIP Conference Proceedings, 2002, 608(1): 578-588.
[78] BRAGG-SITTON S M. Heat pipe reactor dynamic response tests: SAFE-100 reactor core prototype [C]//Proceedings of the Space Nuclear Conference 2005. San Diego, USA, 2005.
[79] REID R S, SENA J T, MARTINEZ A L. Sodium heat pipe module test for the SAFE-30 reactor prototype [J]. AIP Conference Proceedings, 2001, 552(1): 869-874.
[80] HU G, ZHAO S Z, SUN Z Y, et al. A heat pipe cooled modular reactor concept for manned lunar base application [C]//Proceedings of the 21st International Conference on Nuclear Engineering. Chengdu: American Society of Mechanical Engineers, 2013.
[81] POSTON D I, MCCLURE P R, DIXON D D, et al. Experimental demonstration of a heat pipe-Stirling engine nuclear reactor [J]. Nuclear Technology, 2014, 188(3): 229-237.
[82] GIBSON M A, BRIGGS M H, SANZI J L, et al. Heat pipe powered Stirling conversion for the demonstration using flattop fission (DUFF) test [C]//Proceedings of the Nuclear and Emerging Technologies for Space. Albuquerque, USA: American Nuclear Society, 2013.
[83] GIBSON M A, POSTON D I, MCCLURE P R, et al. Heat transport and power conversion of the kilopower reactor test [J]. Nuclear Technology, 2020, 206(S1): 31-42.
[84] MCCLURE P R, POSTON D I, GIBSON M A, et al. Kilopower project: The KRUSTY fission power experiment and potential missions [J]. Nuclear Technology, 2020, 206(S1): S1-S12.
[85] POSTON D I, GIBSON M A, SANCHEZ R G, et al. Results of the KRUSTY nuclear system test [J]. Nuclear Technology, 2020, 206(S1): S89-S117.
[86] POSTON D I. Nuclear design of the HOMER-15 Mars surface fission reactor [R]. Westmont, USA: American Nuclear Society, 2002.
[87] POSTON D I, VOIT S L, REID R S, et al. The heatpipe power system (HPS) for Mars outpose and manned Mars missions [J]. AIP Conference Proceedings, 2000, 504(1): 1327-1334.
[88] POSTON D I. The heatpipe-operated Mars exploration reactor (HOMER) [J]. AIP Conference Proceedings, 2001, 552(1): 797-804.
[89] BUSHMAN A, CARPENTER D M, ELLIS T S, et al. The Martian surface reactor: An advanced nuclear power station for manned extraterrestrial exploration [R]. Cambridge, USA: Center for Advanced Nuclear Energy Systems, Massachusetts Institute of Technology, 2004.
[90] EL-GENK M S, TOURNIER J M. Conceptual design of HP-STMCs space reactor power system for 110 kWe [J]. AIP Conference Proceedings, 2004, 699(1): 658-672.
[91] EL-GENK M S, TOURNIER J M. Performance analysis of potassium heat pipes radiator for HP-STMCs space reactor power system [J]. AIP Conference Proceedings, 2004, 699(1): 793-805.
[92] TOURNIER J M, EL-GENK M S. Reactor lithium heat pipes for HP-STMCs space reactor power system [J]. AIP Conference Proceedings, 2004, 699(1): 781-792.
[93] EL-GENK M S, TOURNIER J M P. "SAIRS": Scalable AMTEC integrated reactor space power system [J]. Progress in Nuclear Energy, 2004, 45(1): 25-69.
[94] BESS J D. A basic LEGO reactor design for the provision of lunar surface power [R]. Idaho Falls, USA: Idaho National Laboratory, 2008.
[95] BESS J D. Project Luna Succendo: The lunar evolutionary growth-optimized (LEGO) reactor [D]. Salt Lake City, USA: The University of Utah, 2008.
[96] GIBSON M A, OLESON S R, POSTON D I, et al. NASA's Kilopower reactor development and the path to higher power missions [C]//Proceedings of 2017 IEEE Aerospace Conference. Big Sky, USA: IEEE, 2017: 1-14.
[97] 姚成志, 胡古, 解家春, 等. 月球表面核反应堆电源方案[J]. 科技导报, 2015, 33(12): 19-23. YAO C Z, HU G, XIE J C, et al. A scheme of lunar surface nuclear reactor power [J]. Science & Technology Review, 2015, 33(12): 19-23. (in Chinese)
[98] 姚成志, 胡古, 赵守智, 等. 火星表面核反应堆电源方案研究[J]. 原子能科学技术, 2016, 50(8): 1449-1455. YAO C Z, HU G, ZHAO S Z, et al. Scheme research of Mars surface nuclear reactor power [J]. Atomic Energy Science and Technology, 2016, 50(8): 1449-1455. (in Chinese)
[99] POSTON D I, GIBSON M A, GODFROY T, et al. KRUSTY reactor design [J]. Nuclear Technology, 2020, 206(S1): S13-S30.
[100] 苏著亭, 杨继材, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016. SU Z T, YANG J C, KE G T. Space nuclear power [M]. Shanghai: Shanghai Jiao Tong University Press, 2016. (in Chinese)
[101] GUO Y C, GUO X Y, GUO S M, et al. Numerical simulation of the early startup period of heat pipe cooled reactor system from the room temperature state [J]. Annals of Nuclear Energy, 2024, 195: 110190.
[102] SUN H, ZHANG R, WANG C L, et al. Reactivity feedback evaluation during the start-up of the heat pipe cooled nuclear reactors [J]. Progress in Nuclear Energy, 2020, 120: 103217.
[103] 袁园, 苟军利, 单建强, 等. 热管冷却空间反应堆系统启动特性研究[J]. 原子能科学技术, 2016, 50(6): 1054-1059. YUAN Y, GOU J L, SHAN J Q, et al. Startup characteristics of heat pipe cooled space reactor [J]. Atomic Energy Science and Technology, 2016, 50(6): 1054-1059. (in Chinese)
[104] MA Y G, ZHONG R C, YU H X, et al. Startup analyses of a megawatt heat pipe cooled reactor [J]. Progress in Nuclear Energy, 2022, 153: 104405.
[105] ZHANG Z Q, WANG C L, GUO K L, et al. HEART, a specific code for thermal-electrical analysis of heat pipe cooled nuclear reactor [J]. International Journal of Thermal Sciences, 2022, 179: 107666.
[106] 李华琪, 江新标, 陈立新, 等. 空间堆热管输热能力分析[J]. 原子能科学技术, 2015, 49(1): 89-95. LI H Q, JIANG X B, CHEN L X, et al. Heat transfer capability analysis of heat pipe for space reactor [J]. Atomic Energy Science and Technology, 2015, 49(1): 89-95. (in Chinese)
[107] 张文文, 王成龙, 田文喜, 等. 新型热管反应堆堆芯热工安全分析[J]. 原子能科学技术, 2017, 51(5): 822-827. ZHANG W W, WANG C L, TIAN W X, et al. Thermal safety analysis of new type heat pipe reactor core [J]. Atomic Energy Science and Technology, 2017, 51(5): 822-827. (in Chinese)
[108] TANG S M, LIAN Q, ZHU L X, et al. Thermal-electrical coupling analysis of the static heat pipe cooled reactor under heat pipe failure condition [J]. Nuclear Engineering and Design, 2024, 417: 112812.
[109] CAO H W, WANG G B. The research on the heat transfer of a solid-core nuclear reactor cooled by heat pipe through a numerical simulation, considering the assembly gaps [J]. Annals of Nuclear Energy, 2019, 130: 431-439.
[110] WANG C L, SUN H, TANG S M, et al. Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system [J]. Nuclear Engineering and Technology, 2020, 52(1): 19-26.
[111] WRIGHT S A, HOUTS M. Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors [J]. AIP Conference Proceedings, 2001, 552(1): 815-821.
[112] ZHANG Y, CHAI X M, WANG C L, et al. Thermal-hydraulic analysis of heat pipe reactor experimental device with thermoelectric generators [J]. Progress in Nuclear Energy, 2022, 146: 104137.
[113] TANG S M, LIU X, WANG C L, et al. Thermal-electrical coupling characteristic analysis of the heat pipe cooled reactor with static thermoelectric conversion [J]. Annals of Nuclear Energy, 2022, 168: 108870.
[114] LI J K, HU Z Y, JIANG H S, et al. Coupled characteristics and performance of heat pipe cooled reactor with closed Brayton cycle [J]. Energy, 2023, 280: 128166.
[115] 孙永康. 基于空间核电源的高温热管热电耦合系统结构与性能研究[D]. 南京: 南京航空航天大学, 2022. SUN Y K. Research on structure and performance of high temperature heat pipe thermoelectric coupling system based on space nuclear power supply [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022. (in Chinese)
[116] ZHANG W W, WANG C L, CHEN R H, et al. Preliminary design and thermal analysis of a liquid metal heat pipe radiator for TOPAZ-II power system [J]. Annals of Nuclear Energy, 2016, 97: 208-220.
[117] ZHANG Z Q, WANG C L, TAN C, et al. Investigation of neutronic and thermal-electric coupling phenomenon in a 100 kWe-level nuclear silent heat pipe-cooled reactor [J]. Applied Thermal Engineering, 2024, 236: 121765.
[118] WANG D Q, YAN B H, CHEN J Y. The opportunities and challenges of micro heat piped cooled reactor system with high efficiency energy conversion units [J]. Annals of Nuclear Energy, 2020, 149: 107808.
[119] PAIVA K V, MANTELLI M B H, SLONGO L K. Experimental testing of mini heat pipes under microgravity conditions aboard a suborbital rocket [J]. Aerospace Science and Technology, 2015, 45: 367-375.
[120] LEE H M, TSAI M C, CHEN H L, et al. Stainless steel heat pipe fabrication, performance testing and modeling [J]. Energy Procedia, 2017, 105: 4745-4750.
[121] 张明昊, 王成龙, 孙浩, 等. 辐照条件下高温锂热管不凝性气体产生特性研究[J]. 原子能科学技术, 2021, 55(6): 1024-1030. ZHANG M H, WANG C L, SUN H, et al. Non-condensable gas generation behavior in high- temperature lithium heat pipe under irradiation [J]. Atomic Energy Science and Technology, 2021, 55(6): 1024-1030. (in Chinese)
[122] SUN H, LIU X, LIAO H Y, et al. Experiment study on thermal behavior of a horizontal high-temperature heat pipe under motion conditions [J]. Annals of Nuclear Energy, 2022, 165: 108760.
[123] KUNDAN A, PLAWSKY J L, WAYNER JR P C. Thermophysical characteristics of a wickless heat pipe in microgravity-constrained vapor bubble experiment [J]. International Journal of Heat and Mass Transfer, 2014, 78: 1105-1113.
[124] BERTO A, AZZOLIN M, LAVIEILLE P, et al. Experimental investigation of liquid film thickness and heat transfer during condensation in microgravity [J]. International Journal of Heat and Mass Transfer, 2022, 199: 123467.
[125] ODHEKAR D D, HARRIS D K. Experimental investigation of bendable heat pipes using sintered copper felt wick [C]//Proceedings of the Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems. San Diego, USA: IEEE, 2006: 570-577.
[126] 陶汉中, 张红, 庄骏. 小型微槽道热管90°弯曲前后传热性能比较[J]. 宇航学报, 2008, 29(2): 722-728. TAO H Z, ZHANG H, ZHUANG J. Comparison of the heat transfer performance in an AGHP with and without 90° bend [J]. Journal of Astronautics, 2008, 29(2): 722-728. (in Chinese)
[127] HABIBNEZHAD LEDARI B, SABZPOOSHANI M. A comparative empirical investigation on the thermal performance of gravity-assisted double-bent, double-ended cooling, and single-bent, single-ended cooling heat pipes [J]. International Communications in Heat and Mass Transfer, 2020, 112: 104505.
[128] MOONEY J P, EGAN V, QUINLAN R, et al. Analysis of sintered wicked heat pipes for space-constrained multiple component cooling [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(11): 1896-1908.
[129] HU C J, YU D L, HE M S, et al. Performance evaluation of ultra-long lithium heat pipe using an improved lumped parameter model [J]. Nuclear Science and Techniques, 2021, 32(12): 141.
[130] LIU S Y, HU J Y, AN R F, et al. A special-shaped sodium heat pipe with a "bridge-type" artery for coupling free-piston Stirling generator and fission reactor [J]. Applied Thermal Engineering, 2024, 245: 122768.
[131] ZHAO J, YUAN D Z, TANG D W, et al. Heat transfer characteristics of a concentric annular high temperature heat pipe under anti-gravity conditions [J]. Applied Thermal Engineering, 2019, 148: 817-824.
[132] LIU Z M, YUAN D Z, HAO Y, et al. Experimental study on heat transfer performance of high temperature heat pipe under axial non-uniform heat flux [J]. Applied Thermal Engineering, 2024, 236: 121817.
[133] KAPPE K, BIHLER M, MORAWIETZ K, et al. Design concepts and performance characterization of heat pipe wick structures by LPBF additive manufacturing [J]. Materials, 2022, 15(24): 8930.
[134] PARK Y Y, BANG I C. Experimental study on 3D printed heat pipes with hybrid screen-groove combined capillary wick structure [J]. Applied Thermal Engineering, 2023, 232: 121037.
[135] 张兴娟, 孔祥明, 杨春信. 气凝胶消防服概念研究[J]. 中国个体防护装备, 2011(3): 15-17. ZHANG X J, KONG X M, YANG C X. Study on the concept of the aerogel-based fire protective clothing [J]. China Personal Protective Equipment, 2011(3): 15-17. (in Chinese)
[136] 孟昊轩, 常晓晶, 艾素芬, 等. 气凝胶隔热材料在空间探测领域研究与应用进展[J]. 宇航材料工艺, 2023, 53(1): 13-20. MENG H X, CHANG X J, AI S F, et al. Research and application progress of aerogel insulation materials in the field of space exploration [J]. Aerospace Materials & Technology, 2023, 53(1): 13-20. (in Chinese)
[137] NEUGEBAUER A, CHEN K, TANG A, et al. Thermal conductivity and characterization of compacted, granular silica aerogel [J]. Energy and Buildings, 2014, 79: 47-57.
[138] KOEBEL M, RIGACCI A, ACHARD P. Aerogel-based thermal superinsulation: An overview [J]. Journal of Sol-Gel Science and Technology, 2012, 63(3): 315-339.
[139] 徐世玉, 邰菊香, 刘学宁, 等. 隔热用聚酰亚胺气凝胶研究进展[J]. 现代化工, 2022, 42(1): 71-75. XU S Y, TAI J X, LIU X N, et al. Research progress in polyimide aerogels for thermal insulation [J]. Modern Chemical Industry, 2022, 42(1): 71-75. (in Chinese)
[140] 马毓, 张航, 朱震庭, 等. 一种基于冷冻干燥制备完整块状二氧化硅-氧化铝复合气凝胶的方法: 202211589122.X [P]. 2023-05-23. MA Y, ZHANG H, ZHU Z T, et al. Method for preparing complete blocky silicon dioxide-aluminum oxide composite aerogel based on freeze drying: 202211589122.X [P]. 2023-05-23. (in Chinese)
[141] 马毓, 张航, 唐瑾晨, 等. 一种冷冻干燥制备完整块状纯氧化铝气凝胶的方法: 202210973633.5[P]. 2022-12-16. MA Y, ZHANG H, TANG J C, et al. Method for preparing complete blocky pure alumina aerogel through freeze drying: 202210973633.5[P]. 2022-12-16. (in Chinese)
[142] QIN S M, NUNEZ III L, SELLERS Z D, et al. Advanced measurement and visualization techniques for high-temperature heat pipe experiments [R]. Idaho Falls, USA: Idaho National Laboratory, 2022.
[143] 刘云. 环路热虹吸管传热特性及两相流不稳定性研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2020. LIU Y. Study on heat transfer characteristics and two-phase flow instability in a two-phase closed loop thermosyphon [D]. Beijing: University of Chinese Academy of Sciences (Institute of Engineering Thermophysics, Chinese Academy of Sciences), 2020. (in Chinese)
[144] LEE S, YUAN D Z, WU B X. Experimental study on non-phase change heat pipe and its mechanism analysis [C]//Proceedings of the 20th National and 9th International ISHMT-ASME Heat and Mass Transfer Conference. Mumbai, India, 2010.
[145] LEE S, YUAN D Z, WU B X. Experimental study on counter-gravity effect of non-phase change heat pipes [C]//Proceedings of 201014th International Heat Transfer Conference. Washington DC, USA: ASME, 2011: 369-375.

基金

国家重点研发计划(2022YFB4002802)

PDF(10132 KB)

Accesses

Citation

Detail

段落导航
相关文章

/