非均衡大客流冲击下城市轨道交通网络抗毁性建模及演化特征

马飞, 蒋金凤, 敖誉芸, 马壮林, 刘擎

清华大学学报(自然科学版) ›› 2024, Vol. 64 ›› Issue (10) : 1717-1733.

PDF(11819 KB)
PDF(11819 KB)
清华大学学报(自然科学版) ›› 2024, Vol. 64 ›› Issue (10) : 1717-1733. DOI: 10.16511/j.cnki.qhdxxb.2024.26.045
专题:大数据分析

非均衡大客流冲击下城市轨道交通网络抗毁性建模及演化特征

  • 马飞1, 蒋金凤1, 敖誉芸1, 马壮林2, 刘擎1
作者信息 +

Modeling and evolution characteristics of urban rail transit network resistance under the impact of unbalanced large passenger flows

  • MA Fei1, JIANG Jinfeng1, AO Yuyun1, MA Zhuanglin2, LIU Qing1
Author information +
文章历史 +

摘要

在非均衡大客流冲击下, 城市轨道交通面临结构抗毁和功能抗毁双重压力, 极易造成轨道交通网络级联失效。首先, 该文分析了非均衡大客流对城市轨道交通网络(urban rail transit network, URTN)级联失效的影响机理, 考虑客流冲击影响, 构建了客流加权网络, 从拓扑特征和客流特征2方面测量轨道站点的重要性; 其次, 根据级联失效理论和混沌动力学改进耦合映像格子 (coupled map lattice, CML)模型, 设置初始状态值为轨道站点客流饱和程度, 并利用故障节点比和网络强度熵刻画URTN级联失效的结构抗毁性和功能抗毁性演化规律; 最后, 以西安地铁为例进行研究。结果表明: 在URTN级联失效过程中, 结构抗毁性和功能抗毁性演化趋势相似; 轨道站点间的耦合系数ε和突发事件扰动R存在临界值(ε=0.3和R=1), 若ε≤0.3或R≤1, 则不发生URTN级联失效, 若ε>0.3且R>1, 则URTN结构抗毁性和功能抗毁性的失效时间随εR的增大而缩短; 客流强度与URTN抗毁性水平呈负相关; 介数大的轨道站点和客流强度大的轨道站点受突发扰动后, URTN结构抗毁性和功能抗毁性能力更低。该文研究结果有助于揭示非均衡大客流冲击下URTN级联失效的影响因素及抗毁性演化规律, 可为加强非均衡大客流冲击下轨道交通安全管理提供依据。

Abstract

[Objective] Despite unbalanced large passenger flows, urban rail transit network (URTN) frequently encounter the dual pressures of structural and functional resistance. This can result in cascade failure, potentially leading to partial or even total collapse of the URTN. To ensure the normal operation of these networks and understand the characteristics of their disaster resistance evolution, this study explores how an unbalanced large passenger flow affects the disaster resistance of URTN. [Methods] This study initially examines the effect of unbalanced large passenger flows on the URTN cascade failure from two perspectives: transport efficiency and passenger service. Subsequently, a passenger-flow weighting network is constructed to calculate the passenger-flow intensity. Herein, the weights of different nodes represent the proportion of the passenger flow per unit of time at different track stations during periods of unbalanced large passenger flows. This allows the measurement of a track station's importance level based on node number, node betweenness, and passenger flow intensity. Moreover, this study adapts the coupled map lattice (CML) model, building upon cascade failure theory and chaos dynamics, to obtain more accurate values for the failure node ratio and network strength entropy. In the modified CML model, the sudden disturbance level is defined according to the breakdown degree and influence range. The initial state value is determined by the saturation degree of the passenger flow at the track station, thus addressing the sensitive dependence of the spatiotemporal chaotic system on the initial state value. Subsequently, the dynamic evolution characteristics of the URTN structural and functional resilience levels are explored under different conditions of fault propagation and passenger flow strength. These analyses were based on failure node ratio and network strength entropy metrics. Finally, a case study was conducted using the Xi'an subway as an example. [Results] The results showed the following: (1) During a URTN cascade failure, the disaster resistance evolution trends of structure and function aligned, changed, and failed simultaneously. (2) Critical values existed for the inter-station coupling coefficient ε and sudden event disturbance R, which were ε=0.3 and R=1, respectively. Below these thresholds, the URTN cascade failure effect did not occur. However, when ε>0.3 and R>1, the failure time of the URTN's structural and functional disaster resistance decreased as ε and R increased. (3) The intensity of the passenger flow negatively affected the structural and functional resilience of the URTN. When disturbed, stations with high passenger flow intensity were more likely to trigger a URTN cascade failure. (4) Stations with large interconnectors and high passenger flow intensity exhibited lower structural and functional vulnerability after a sudden disturbance than stations with larger degrees. [Conclusions] This study has important theoretical and practical implications. Theoretically, it helps uncover the factors affecting cascade failure and the evolution characteristics of the URTN's disaster resistance under the impact of an unbalanced large passenger flows. In practice, this study provides a crucial foundation for decision-making regarding the enhancement of safety management in rail transit when faced with challenges posed by unbalanced large passenger flows.

关键词

城市轨道交通 / 非均衡大客流 / 耦合映像格子 / 级联失效 / 抗毁性

Key words

urban rail transit / unbalanced large passenger flows / coupled map lattice / cascade failure / resistance

引用本文

导出引用
马飞, 蒋金凤, 敖誉芸, 马壮林, 刘擎. 非均衡大客流冲击下城市轨道交通网络抗毁性建模及演化特征[J]. 清华大学学报(自然科学版). 2024, 64(10): 1717-1733 https://doi.org/10.16511/j.cnki.qhdxxb.2024.26.045
MA Fei, JIANG Jinfeng, AO Yuyun, MA Zhuanglin, LIU Qing. Modeling and evolution characteristics of urban rail transit network resistance under the impact of unbalanced large passenger flows[J]. Journal of Tsinghua University(Science and Technology). 2024, 64(10): 1717-1733 https://doi.org/10.16511/j.cnki.qhdxxb.2024.26.045

参考文献

[1] HÖRCHER D, GRAHAM D J. Demand imbalances and multi-period public transport supply [J]. Transportation Research Part B: Methodological, 2018, 108: 106-126.
[2] 李锴, 何永锋, 吴纬, 等. 面向级联失效的复杂层次网络可靠性[J]. 华中科技大学学报(自然科学版), 2018, 46(9): 45-51. LI K, HE Y F, WU W, et al. Reliability of complex hierarchical network for cascading failure [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(9): 45-51. (in Chinese)
[3] 马敏, 胡大伟, 刘杰, 等. 基于客流加权的城市轨道交通网络抗毁性分析[J]. 中国安全科学学报, 2022, 32(12): 141-149. MA M, HU D W, LIU J, et al. Invulnerability analysis of urban rail transit network based on weighted passenger flow [J]. China Safety Science Journal, 2022, 32(12): 141-149. (in Chinese)
[4] 朱文金, 王罗昊佶, 蔡志强, 等. 考虑级联失效的可重构网络抗毁性研究[J]. 西北工业大学学报, 2021, 39(4): 839-846. ZHU W J, WANG L H J, CAI Z Q, et al. Resilience analysis for reconfigurable network with cascading failures [J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 839-846. (in Chinese)
[5] XU J Q, HUANG H N, CHENG Y Q, et al. Vulnerability assessment of freeway network considering the probabilities and consequences from a perspective based on network cascade failure [J]. PLoS One, 2022, 17(3): e0265260.
[6] 杨景峰, 朱大鹏, 赵瑞琳. 城轨网络站点重要度评估与级联失效抗毁性分析[J]. 中国安全科学学报, 2022, 32(8): 161-167. YANG J F, ZHU D P, ZHAO R L. Evaluation of station importance and cascading failure resistance analysis of urban rail transit network [J]. China Safety Science Journal, 2022, 32(8): 161-167. (in Chinese)
[7] 马书红, 武亚俊, 陈西芳. 城市群多模式交通网络结构韧性分析: 以关中平原城市群为例[J]. 清华大学学报(自然科学版), 2022, 62(7): 1228-1235. MA S H, WU Y J, CHEN X F. Structural resilience of multimodal transportation networks in urban agglomerations: A case study of the Guanzhong Plain urban agglomeration network [J]. Journal of Tsinghua University (Science and Technology), 2022, 62(7): 1228-1235. (in Chinese)
[8] WU S J, ZHU Y, LI N, et al. Urban rail transit system network reliability analysis based on a coupled map lattice model [J]. Journal of Advanced Transportation, 2021, 2021: 5548956.
[9] 王永岗, 王龙健, 刘志岗, 等. 多模式复合交通网脆弱性测度[J]. 交通运输工程学报, 2023, 23(1): 195-207. WANG Y G, WANG L J, LIU Z G, et al. Vulnerability metrics of multimodal composite transportation network [J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 195-207. (in Chinese)
[10] 王秋玲, 朱璋元, 陈红, 等. 基于CML的级联失效下异质多层交通网络节点抵抗特性研究[J]. 中国公路学报, 2022, 35(1): 263-274. WANG Q L, ZHU Z Y, CHEN H, et al. Node resistance characteristic of heterogeneous multi-layer transportation networks under cascading failure based on coupled map lattice [J]. China Journal of Highway and Transport, 2022, 35(1): 263-274. (in Chinese)
[11] 李成兵, 魏磊, 卢天伟, 等. 城市群交通网络抗毁性仿真研究[J]. 系统仿真学报, 2018, 30(2): 489-496. LI C B, WEI L, LU T W, et al. Invulnerability simulation analysis of compound traffic network in urban agglomeration [J]. Journal of System Simulation, 2018, 30(2): 489-496. (in Chinese)
[12] LU Q C, ZHANG L, XU P C, et al. Modeling network vulnerability of urban rail transit under cascading failures: A coupled map lattices approach [J]. Reliability Engineering & System Safety, 2022, 221: 108320.
[13] 路庆昌, 刘鹏, 徐标, 等. 运营事件下基于韧性的地铁网络保护决策优化[J]. 交通运输工程学报, 2023, 23(3): 209-220. LU Q C, LIU P, XU B, et al. Resilience-based protection decision optimization for metro network under operational incidents [J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 209-220. (in Chinese)
[14] HUANG W C, ZHOU B W, YU Y C, et al. Using the disaster spreading theory to analyze the cascading failure of urban rail transit network [J]. Reliability Engineering & System Safety, 2021, 215: 107825.
[15] 冯树民, 陈勇, 辛梦薇. 突发大客流下地铁协调限流优化模型[J]. 哈尔滨工业大学学报, 2019, 51(2): 179-185. FENG S M, CHEN Y, XIN M W. Coordination passenger flow control model for metro under sudden large passenger flow [J]. Journal of Harbin Institute of Technology, 2019, 51(2): 179-185. (in Chinese)
[16] 潘恒彦, 张文会, 胡宝雨, 等. 城市公交-地铁加权复合网络构建及鲁棒性分析[J]. 吉林大学学报(工学版), 2022, 52(11): 2582-2591. PAN H Y, ZHANG W H, HU B Y, et al. Construction and robustness analysis of urban weighted subway-bus composite network [J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(11): 2582-2591. (in Chinese)
[17] 冯霞, 贾宏璨. 考虑节点失效和边失效的航空网络鲁棒性[J]. 北京交通大学学报, 2021, 45(5): 84-92. FENG X, JIA H C. Aviation network robustness considering node failure and edge failure [J]. Journal of Beijing Jiaotong University, 2021, 45(5): 84-92. (in Chinese)
[18] 刘朝阳, 吕永波, 刘步实, 等. 城市轨道交通运输网络级联失效抗毁性研究[J]. 交通运输系统工程与信息, 2018, 18(5): 82-87. LIU Z Y, Lü Y B, LIU B S, et al. Cascading failure resistance of urban rail transit network [J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5): 82-87. (in Chinese)
[19] 李子浩, 田向亮, 黎忠文, 等. 基于客流规律的地铁车站客流风险分析[J]. 清华大学学报(自然科学版), 2019, 59(10): 854-860. LI Z H, TIAN X L, LI Z W, et al. Risk analysis of metro station passenger flow based on passenger flow patterns [J]. Journal of Tsinghua University (Science and Technology), 2019, 59(10): 854-860. (in Chinese)
[20] SUN J, YAO J J, WANG M X. Subway passenger flow analysis and management optimization model based on AFC data [J]. Journal of Intelligent & Fuzzy Systems, 2021, 41(4): 4773-4783.
[21] MA Z L, LIU J, CHIEN S I J, et al. Identifying critical stations affecting vulnerability of a metro network considering passenger flow and cascading failure: Case of Xi'an Metro in China [J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2023, 9(2): 04023014.
[22] SHEN Y, REN G, RAN B. Analysis of cascading failure induced by load fluctuation and robust station capacity assignment for metros [J]. Transportmetrica A: Transport Science, 2022, 18(3): 1401-1419.
[23] ZHANG J H, WANG Z Q, WANG S L, et al. Vulnerability assessments of weighted urban rail transit networks with integrated coupled map lattices [J]. Reliability Engineering & System Safety, 2021, 214: 107707.
[24] SUN L S, HUANG Y C, CHEN Y Y, et al. Vulnerability assessment of urban rail transit based on multi-static weighted method in Beijing, China [J]. Transportation Research Part A: Policy and Practice, 2018, 108: 12-24.
[25] HASSAN R, YOSRI A, EZZELDIN M, et al. Robustness quantification of transit infrastructure under systemic risks: A hybrid network-analytics approach for resilience planning [J]. Journal of Transportation Engineering, Part A: Systems, 2022, 148(10): 04022089.
[26] 中华人民共和国中央人民政府. 国务院办公厅关于印发国家城市轨道交通运营突发事件应急预案的通知[P]. (2015-05-14) [P]. https://www.gov.cn/zhengce/zhengceku/2015-05/14/content_9751.htm.Central Government of the People's Republic of China. Notice of The General Office of the State Council on printing and distributing the national emergency response plan for urban rail transit operations [P]. (2015-05-14) [P]. https://www.gov.cn/zhengce/zhengceku/2015-05/14/content_9751.htm. (in Chinese)
[27] 李颖薇, 冯套柱. 基于fsQCA(模糊集定性比较分析)的城市轨道交通运营安全风险研究[J]. 城市轨道交通研究, 2023, 26(8): 180-183, 191. LI Y W, FENG T Z. Study on urban rail transit operational safety risks based on fsQCA [J]. Urban Mass Transit, 2023, 26(8): 180-183, 191. (in Chinese)
[28] 胡启洲, 张晓亮, 吴翊恺, 等. 车路协同下高速公路运行态势监测方法[J]. 东南大学学报(自然科学版), 2020, 50(6): 1143-1147. HU Q Z, ZHANG X L, WU Y K, et al. Monitoring method for traffic situation of highway under vehicle-infrastructure cooperation [J]. Journal of Southeast University (Natural Science Edition), 2020, 50(6): 1143-1147. (in Chinese)
[29] SHEN Y, REN G, RAN B. Cascading failure analysis and robustness optimization of metro networks based on coupled map lattices: A case study of Nanjing, China [J]. Transportation, 2021, 48(2): 537-553.
[30] 杨阳, 孙利民. 基于FPP-Grey的地铁车站火灾安全灰色聚类评价[J]. 安全与环境工程, 2019, 26(2): 99-104. YANG Y, SUN L M. Grey clustering evaluation of fire safety of subway station based on FPP-Grey [J]. Safety and Environmental Engineering, 2019, 26(2): 99-104. (in Chinese)
[31] 陈长坤, 何凡, 赵冬月, 等. 基于系统机能曲线的城市道路公共交通系统韧性评估方法[J]. 清华大学学报(自然科学版), 2022, 62(6): 1016-1022. CHEN C K, HE F, ZHAO D Y, et al. Urban public transport system resilience evaluation based on a system function curve [J]. Journal of Tsinghua University (Science and Technology), 2022, 62(6): 1016-1022. (in Chinese)
[32] 熊志华, 姚智胜. 轨道交通网络级联失效影响范围研究[J]. 交通运输系统工程与信息, 2020, 20(1): 12-18. XIONG Z H, YAO Z S. Influence scope of cascading failure on rail transit system [J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 12-18. (in Chinese)
[33] ZHANG L, XU M, WANG S A. Quantifying bus route service disruptions under interdependent cascading failures of a multimodal public transit system based on an improved coupled map lattice model [J]. Reliability Engineering & System Safety, 2023, 235: 109250.
[34] 黄爱玲, 徐笑涵, 关伟, 等. 基于加权耦合映像格子的地铁网络稳定性演化研究[J]. 交通运输系统工程与信息, 2021, 21(3): 140-149. HUANG A L, XU X H, GUAN W, et al. Evolution of metro network stability based on weighted coupled map lattice [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 140-149. (in Chinese)
[35] ALBERT R, JEONG H, BARABÁSI A L. Error and attack tolerance of complex networks [J]. Nature, 2000, 406(6794): 378-382.

基金

国家自然科学基金项目(72104034, 72104037);陕西省自然科学基础研究计划项目(2024JC-YBMS-359);陕西省交通运输厅科技项目(23-12K);陕西省教育厅重点科学研究计划项目(21JP007);西安市科技计划项目(24SFSF0009)

PDF(11819 KB)

Accesses

Citation

Detail

段落导航
相关文章

/