微重力条件下C1-C4烃类燃料燃烧生成碳烟研究进展

王文娇, 金楷茹, 郑智浩, 邝九杰, 田振玉

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (9) : 1763-1773.

PDF(3539 KB)
PDF(3539 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (9) : 1763-1773. DOI: 10.16511/j.cnki.qhdxxb.2024.27.031
微重力燃烧

微重力条件下C1-C4烃类燃料燃烧生成碳烟研究进展

作者信息 +

Research progress on soot formation from C1-C4 hydrocarbon fuel combustion under microgravity

Author information +
文章历史 +

摘要

烃类燃料的微重力燃烧是太空环境中研究燃烧过程的重要领域之一。本文从理论模型、检测手段以及重力对碳烟生成量及分布区域的影响3个方面总结了微重力条件下C1-C4烃类燃料燃烧生成碳烟的研究进展。详细阐释了目前数值模拟采用的碳烟模型及其优缺点, 分析了应用于微重力条件下的碳烟检测/诊断手段的优势及不足, 介绍了已有研究中揭示的重力对碳烟生成量及分布区域的影响规律, 并对微重力条件下碳烟生成过程的未来研究方向进行展望。

Abstract

Significance: The combustion of hydrocarbon fuels is a significant element in energy conversion and utilization, and it involves complex chemical reactions and physical phenomena. The formation of soot is a critical phenomenon in this process. In addition to environmental pollution, the formation of soot in engines may induce safety risks. An excessive amount of soot may accumulate and block the nozzle of an aerospace engine, resulting in flight accidents. Therefore, it is critically important to control soot formation to ensure flight safety and thus reduce environmental pollution. To effectively control soot, an extensive analysis of the formation mechanism of soot is required. Under normal gravitational conditions, the combustion process may be significantly affected by natural convection, which intensifies the complexity and instability of combustion. This further constrains the analysis of soot formation. However, under microgravity conditions, the intrinsic nature of the combustion phenomena is more pronounced, and the combustion and flow problems are simplified. Furthermore, compared with normal gravity conditions, the flame structure is more stable and symmetrical, which can be attributed to the reduction or even elimination of buoyant convection. Additionally, factors such as residence time, concentration, and particle size exhibit obvious increases, facilitating the investigation of the soot formation process. However, due to the current limitations of microgravity facilities in terms of time and space, existing research on soot formation under microgravity conditions is not comprehensive. Therefore, it is important to summarize the progress made in the current research on soot formation under microgravity conditions and evaluate the limitations of these experiments in these conditions. This may promote the development of soot-formation research under microgravity combustion. Progress: In terms of soot models, soot growth models primarily involve acetylene single-equation and acetylene/benzene two-equation soot models, which are optimized and improved in accordance with experimental measurements for soot nucleation, growth, and oxidation, in addition to radiation models (optical thin radiation model). These models can help to analyze the variation in soot formation location, particle size, and nucleation and oxidation processes to some extent. However, there are still significant discrepancies between the numerical and experimental microgravity results. In terms of diagnostic techniques, soot diagnostic methods operating under microgravity conditions include intrusive and non-intrusive techniques, which can be used to measure parameters such as soot morphology, structural size, and concentration distribution. Because of the significant disturbances caused by intrusive techniques in the combustion flow field, nonintrusive optical diagnostic techniques have garnered more attention for use in experiments. With the improvement and development of microgravity facilities, experimental detection techniques have evolved from one-dimensional to multi-dimensional measurements, and comprehensive results are obtained. However, existing research on multi-dimensional measurements under microgravity conditions is limited. In accordance with the impact of gravity on soot formation, numerical and experimental methods are often combined to explore soot formation characteristics in drop towers, space stations, and parabolic flights by considering small-molecule hydrocarbons as fuel sources. The main purpose of these investigations was to analyze the impact of buoyant convection on soot formation pathways, distribution areas, and soot morphology and structural characteristics. Conclusions and Prospects: Although numerous experiments and numerical simulations have been conducted to study the formation of soot under microgravity conditions, there is a lack of extensive research. Future research directions for microgravity soot studies may focus on multi-dimensional measurements of experimental parameters under microgravity conditions to obtain more precise experimental results, which may help optimize soot models, improve predictive accuracy, and deeply explore the intrinsic mechanisms of soot formation.

关键词

微重力燃烧 / 碳烟生成 / 理论模型 / 诊断技术

Key words

microgravity combustion / soot formation / theoretical model / diagnostic techniques

引用本文

导出引用
王文娇, 金楷茹, 郑智浩, . 微重力条件下C1-C4烃类燃料燃烧生成碳烟研究进展[J]. 清华大学学报(自然科学版). 2025, 65(9): 1763-1773 https://doi.org/10.16511/j.cnki.qhdxxb.2024.27.031
Wenjiao WANG, Kairu JIN, Zhihao ZHENG, et al. Research progress on soot formation from C1-C4 hydrocarbon fuel combustion under microgravity[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(9): 1763-1773 https://doi.org/10.16511/j.cnki.qhdxxb.2024.27.031
中图分类号: TP393.1   

参考文献

1
PEJPICHESTAKUL W , CUOCI A , FRASSOLDATI A , et al. Buoyancy effect in sooting laminar premixed ethylene flame[J]. Combustion and Flame, 2019, 205, 135- 146.
2
RICHTER H , HOWARD J B . Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways[J]. Progress in Energy and Combustion science, 2000, 26(4-6): 565- 608.
3
SENKAN S , CASTALDI M . Formation of polycyclic aromatic hydrocarbons (PAH) in methane combustion: Comparative new results from premixed flames[J]. Combustion and Flame, 1996, 107(1-2): 141- 150.
4
BHARGAVA A , WESTMORELAND P R . Measured flame structure and kinetics in a fuel-rich ethylene flame[J]. Combustion and Flame, 1998, 113(3): 333- 347.
5
SIVATHANU Y R , FAETH G M . Soot volume fractions in the overfire region of turbulent diffusion flames[J]. Combustion and Flame, 1990, 81(2): 133- 149.
6
张璐, 刘迎春. 空间站微重力燃烧研究现状与展望[J]. 载人航天, 2015, 21(6): 603- 610.
ZHANG L , LIU Y C . Research status and outlook of microgravity combustion in Space Station[J]. Manned Space Flight, 2015, 21(6): 603- 610.
7
薛源, 徐国鑫, 胡松林, 等. 国际空间站微重力燃烧项目规划及进展[J]. 载人航天, 2020, 26(2): 252- 260.
XUE Y , XU G X , HU S L , et al. Planning and progress of microgravity combustion science on the International Space Station[J]. Manned Space Flight, 2020, 26(2): 252- 260.
8
张夏. 微重力燃烧研究进展[J]. 力学进展, 2004, 34(4): 507- 528.
ZHANG X . Research advances on micgravity combustion[J]. Advances in Mechanics, 2004, 34(4): 507- 528.
9
JEON B H , FUJITA O , NAKAMURA Y , et al. Effect of co-axial flow velocity on soot formation in a laminar jet diffusion flame under microgravity[J]. Journal of Thermal Science and Technology, 2007, 2(2): 281- 290.
10
BAHADORI M Y, STOCKER D P, VAUGHAN D F, et al. Effects of buoyancy on laminar, transitional, and turbulent gas jet diffusion flames[M]//WILLIAMS F A, OPPENHEIM A K, OLFE D B, et al. Modern Developments in Energy, Combustion and Spectroscopy. Oxford: Pergamon Press, 1993: 49-66.
11
LAW C K , FAETH G M . Opportunities and challenges of combustion in microgravity[J]. Progress in Energy and Combustion Science, 1994, 20(1): 65- 113.
12
PRUD'HOMME R , LEGROS G , TORERO J L . Combustion in microgravity: The French contribution[J]. Comptes Rendus Mécanique, 2017, 345(1): 86- 98.
13
KONO M , ITO K , NⅡOKA T , et al. Current state of combustion research in microgravity[J]. Symposium (International) on Combustion, 1996, 26(1): 1189- 1199.
14
KANG Q , LONG M , ZHANG Y Z , et al. Advances of microgravity sciences[J]. Chinese Journal of Space Science, 2014, 34(5): 733- 739.
15
MACKINNON J G . Numerical distribution functions for unit root and cointegration tests[J]. Journal of Applied Econometrics, 1996, 11(6): 601- 618.
16
TESNER P A , SMEGIRIOVA T D , KNORRE V G . Kinetics of dispersed carbon formation[J]. Combustion and Flame, 1971, 17(2): 253- 260.
17
FRENKLACH M , CLARY D W , GARDINER W C , et al. Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene[J]. Symposium (International) on Combustion, 1985, 20(1): 887- 901.
18
LEUNG K M , LINDSTEDT R P , JONES W P . A simplified reaction mechanism for soot formation in nonpremixed flames[J]. Combustion and Flame, 1991, 87(3-4): 289- 305.
19
LINDSTEDT P R. Simplified soot nucleation and surface growth steps for non-premixed flames[M]//Bockhorn H. Soot Formation in Combustion: Mechanisms and Models. Berlin, Heidelberg: Springer, 1994: 417-441.
20
SNELLING D R, SMALLWOOD G J, GÜLDER Ö L, et al. Soot volume fraction characterization using the laser-induced incandescence detection method[C]//Proceedings of the 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics. Lisbon, Portugal: Springer-Verlag, 2000: 10-13.
21
KAPLAN C R , SHADDIX C R , SMYTH K C . Computations of enhanced soot production in time-varying CH4/air diffusion flames[J]. Combustion and Flame, 1996, 106(4): 392- 398.
22
LIU F S , GUO H S , SMALLWOOD G J , et al. Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flames[J]. Combustion Theory and Modelling, 2003, 7(2): 301- 315.
23
GARO A , PRADO G , LAHAYE J . Chemical aspects of soot particles oxidation in a laminar methane-air diffusion flame[J]. Combustion and Flame, 1990, 79(3-4): 226- 233.
24
BRADLEY D , DIXON-LEWIS G , EL-DIN HABIK S , et al. The oxidation of graphite powder in flame reaction zones[J]. Symposium (International) on Combustion, 1985, 20(1): 931- 940.
25
MA B , CAO S , GIASSI D , et al. An experimental and computational study of soot formation in a coflow jet flame under microgravity and normal gravity[J]. Proceedings of the Combustion Institute, 2015, 35(1): 839- 846.
26
DOBBINS R R , TINJERO J , SQUEO J , et al. A combined experimental and computational study of soot formation in normal and microgravity conditions[J]. Combustion Science and Technology, 2023, 195(15): 3882- 3907.
27
LIU F S , GUO H S , SMALLWOOD G J , et al. Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 73(2-5): 409- 421.
28
LOU C , CHEN C , SUN Y P , et al. Review of soot measurement in hydrocarbon-air flames[J]. Science China Technological Sciences, 2010, 53(8): 2129- 2141.
29
WANG Y , CHUNG S H . Soot formation in laminar counterflow flames[J]. Progress in Energy and Combustion Science, 2019, 74, 152- 238.
30
DOBBINS R A , MEGARIDIS C M . Morphology of flame-generated soot as determined by thermophoretic sampling[J]. Langmuir, 1987, 3(2): 254- 259.
31
KÖYLÜ Ü Ö , MCENALLY C S , ROSNER D E , et al. Simultaneous measurements of soot volume fraction and particle size / microstructure in flames using a thermophoretic sampling technique[J]. Combustion and Flame, 1997, 110(4): 494- 507.
32
LI Z G , WANG H . Drag force, diffusion coefficient, and electric mobility of small particles. Ⅱ. Application[J]. Physical Review E, 2003, 68(6): 061207.
33
FUJITA O , ITO K . Observation of soot agglomeration process with aid of thermophoretic force in a microgravity jet diffusion flame[J]. Experimental Thermal and Fluid Science, 2002, 26(2-4): 305- 311.
34
KU J C , GRIFFIN D W , GREENBER P S , et al. Buoyancy-induced differences in soot morphology[J]. Combuston and Flame, 1995, 102(1): 216- 218.
35
MCENALLY C S , KÖYLÜ Ü Ö , PFEFFERLE L D , et al. Soot volume fraction and temperature measurements in laminar nonpremixed flames using thermocouples[J]. Combustion and Flame, 1997, 109(4): 701- 720.
36
ESCUDERO F , CRUZ J J , LIU F , et al. Correction of laser-induced incandescence signal trapping in soot measurement in a microgravity boundary layer laminar diffusion flame[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4825- 4835.
37
ARANA C P , PONTONI M , SEN S , et al. Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames[J]. Combustion and Flame, 2004, 138(4): 362- 372.
38
WAL R L V , TICICH T M , STEPHENS A B . Can soot primary particle size be determined using laser-induced incandescence?[J]. Combustion and Flame, 1999, 116(1): 291- 296.
39
SNELLING D R , THOMSON K A , SMALLWOOD G J , et al. Spectrally resolved measurement of flame radiation to determine soot temperature and concentration[J]. AIAA journal, 2002, 40(9): 1789- 1795.
40
ZHAO H , LADOMMATOS N . Optical diagnostics for soot and temperature measurement in diesel engines[J]. Progress in Energy and Combustion Science, 1998, 24(3): 221- 255.
41
GREENBERG P S , KU J C . Soot volume fraction maps for normal and reduced gravity laminar acetylene jet diffusion flames[J]. Combustion and Flame, 1997, 108(1-2): 227- 230.
42
JEON B H , CHOI J H . Effect of buoyancy on soot formation in gas-jet diffusion flame[J]. Journal of Mechanical Science and Technology, 2010, 24(7): 1537- 1543.
43
WALSH K T , FIELDING J , SMOOKE M D , et al. Experimental and computational study of temperature, species, and soot in buoyant and non-buoyant coflow laminar diffusion flames[J]. Proceedings of the Combustion Institute, 2000, 28(2): 1973- 1979.
44
REIMANN J , KUHLMANN S A , WILL S . Investigations on soot formation in heptane jet diffusion flames by optical techniques[J]. Microgravity Science and Technology, 2010, 22(4): 499- 505.
45
REIMANN J , WILL S . Optical diagnostics on sooting laminar diffusion flames in microgravity[J]. Microgravity-Science and Technology, 2005, 16(1): 333- 337.
46
BHOWAL A J , MANDAL B K . A computational study of soot formation in methane air co-flow diffusion flame under microgravity conditions[J]. Microgravity Science and Technology, 2016, 28(4): 395- 412.
47
LIU F S , SMALLWOOD G J , Kong W J . The importance of thermal radiation transfer in laminar diffusion flames at normal and microgravity[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(7): 1241- 1249.
48
SUNDERLAND P B , MORTAZAVI S , FAETH G M , et al. Laminar smoke points of nonbuoyant jet diffusion flames[J]. Combustion and Flame, 1994, 96(1-2): 97- 103.
49
URBAN D L , YUAN Z G , SUNDERLAND P B , et al. Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames[J]. AIAA journal, 1998, 36(8): 1346- 1360.
50
CHOI J H , FUJITA O , TSUIKI T , et al. Experimental study on thermophoretic deposition of soot particles in laminar diffusion flames along a solid wall in microgravity[J]. Experimental Thermal and Fluid Science, 2008, 32(8): 1484- 1491.
51
AALBURG C , DIEZ F J , FAETH G M , et al. Shapes of nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still air[J]. Combustion and Flame, 2005, 142(1-2): 1- 16.
52
LIN K C , FAETH G M , SUNDERLAND P B , et al. Shapes of nonbuoyant round luminous hydrocarbon/air laminar jet diffusion flames[J]. Combustion and Flame, 1999, 116(3): 415- 431.
53
URBAN D L , YUAN Z G , SUNDERLAND P B , et al. Smoke-point properties of non-buoyant round laminar jet diffusion flames[J]. Proceedings of the Combustion Institute, 2000, 28(2): 1965- 1972.
54
ITO H , FUJITA O , ITO K . Agglomeration of soot particles in diffusion flames under microgravity[J]. Combustion and Flame, 1994, 99(2): 363- 370.
55
BAHADORI M Y , EDELMAN R B , STOCKER D P , et al. Ignition and behavior of laminar gas-jet diffusion flames in microgravity[J]. AIAA Journal, 1990, 28(2): 236- 244.
56
KAPLAN C R , ORAN E S , KAILASANATH K , et al. Gravitational effects on sooting diffusion flames[J]. Symposium (International) on Combustion, 1996, 26(1): 1301- 1309.
57
KONG W J , LIU F S . Effects of gravity on soot formation in a coflow laminar methane/air diffusion flame[J]. Microgravity Science and Technology, 2010, 22(2): 205- 214.
58
ZHANG Y , LIU D , LI S , et al. The influence of gravity levels on soot formation for the combustion of ethylene-air mixture[J]. Russian Journal of Physical Chemistry A, 2014, 88(13): 2300- 2307.
59
BHOWAL A J , MANDAL B K . A transient study on the development of temperature field and soot under reduced gravity in a methane air diffusion flame[J]. Microgravity Science and Technology, 2019, 31(1): 13- 29.
60
YUAN H L , KONG W J . Soot formation in laminar diffusion flame under microgravityormalsize[J]. Chinese Journal of Space Science, 2018, 38(4): 517- 523.
61
VESHKINI A , DWORKIN S B . A computational study of soot formation and flame structure of coflow laminar methane/air diffusion flames under microgravity and normal gravity[J]. Combustion Theory and Modelling, 2017, 21(5): 864- 878.
62
CHOI J H , LEE J H , PARK S H . Feasibility of flame synthesis of functional carbon nanomaterials under microgravity conditions[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(6): 4243- 4246.

基金

科技部重点研发计划(2021YFA0716200)
中国载人航天工程空间应用系统项目
国家自然科学基金国家杰出青年科学基金项目(52325604)

版权

版权所有,未经授权,不得转载。
PDF(3539 KB)

Accesses

Citation

Detail

段落导航
相关文章

/