中国空间站气体射流火焰科学实验进展

刘有晟, 李星贤, 温禹哲, 郑会龙, 杨肖芳, 张晓武, 贺宇峰, 曹娇坤, 杜昌帅, 姚强

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (9) : 1609-1620.

PDF(9641 KB)
PDF(9641 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (9) : 1609-1620. DOI: 10.16511/j.cnki.qhdxxb.2024.27.039
微重力燃烧

中国空间站气体射流火焰科学实验进展

作者信息 +

Gas jet flame science experiments aboard the China Space Station

Author information +
文章历史 +

摘要

中国空间站燃烧科学实验柜计划支持多种类型(气、液、固体)燃料的在轨燃烧科学实验, 其中首批系列项目开展了与气体射流火焰相关的微重力燃烧科学实验。该文回顾了国内外微重力气体射流火焰实验进展; 介绍了中国空间站气体火焰实验装置, 包括燃烧科学实验系统中气体实验插件的综合功能及其可支持的研究类型; 总结了燃烧科学实验系统在地面和在轨初步运行情况。其中, 燃烧科学实验系统为气体实验插件提供所需的水冷、电、气等资源, 而气体实验插件支持气体流量调节功能, 可根据项目科学目标调整气体类型、流量、点火功率, 搭配可更换的项目燃烧器以实现丰富多样的火焰形式, 燃烧室窗口外的多种光学诊断手段可实现对火焰形貌、速度场、OH和CH自由基空间分布数据的提取。该文为气体火焰相关的科学实验提供了平台支持和设计依据。

Abstract

Significance: Experimental conditions in microgravity differ considerably from those in Earth's normal gravity. Combustion experiments conducted in microgravity eliminate the effects of natural convection and simplify the complex factors of combustion processes. Combustion experiments can reveal many physical and chemical phenomena only under normal gravity conditions, providing significant insights for fundamental scientific research. Meanwhile, microgravity combustion experiments allow a deeper investigation into the fundamental physical phenomena of advanced combustion issues, serving as a crucial means for basic research. This research supports China's energy and power industries in addressing the needs related to energy conservation, emission reduction, and green energy transition, as well as those related to fire prevention on the ground and in space. Progress: The China Space Station (CSS) is planned to support combustion science experiments using multiple fuel types, including gaseous, liquid, and solid fuels, in orbit. The first series of CSS combustion experiments consisted of gaseous combustion experiments, a few of which were conducted in the combustion science rack (CSR). This article reviews the progress of microgravity jet flame research and introduces types of scientific research that can potentially be supported by the combustion science application system and gaseous combustion experiment insert (GCEI) in the CSR. The combustion science experiment system provides the GCEI with the necessary resources, such as water cooling, electricity, and gas emissions. The GCEI supports gas-flow regulation functions, allowing the adjustment of the gas type, flow rate, and ignition power based on the project's scientific objectives. The GCEI features a universal burner platform and can adjust the gas composition, flow rate, and ignition energy. Various types of flames can be generated by replacing the project burners. Optical diagnostics conducted outside the optical windows of the combustion chamber provide data on the flame dynamics, flow fields, and spatial distributions of OH and CH. Currently, astronauts aboard the CSS have installed an igniter in the gas experiment module and mounted the GCEI in the CSR combustion chamber. The GCEI automatically completes a series of actions, including configuring the combustion environment gas, ejecting the fuel gas, heating the igniter, determining parameters, performing optical diagnostics, filtering and circulating, and exhausting waste gases. Because of the lack of buoyancy effects, microgravity flames exhibit considerable differences compared to normal gravity flames. After transmitting the experimental data to the ground operation control center, the control and monitoring of the experimental conditions are performed to confirm the normal operation of each subsystem. The fuel, oxidizer, and inert-gas flow rates are set according to predetermined delays and settings, demonstrating the normal operation of key modules, such as the GCEI's fuel gas cylinder module, gas-distribution solenoid valve, igniter, and oxidizer and diluent subsystems of the CSR. The image intensifier camera of the combustion diagnostic subsystem captures corresponding OH and CH emission images, demonstrating an increase in the flame width and a rapid decrease in the flame height until localized extinction occurs at the end of the non-premixed flame. Conclusions and Prospects: The present study verifies that the GCEI can effectively realize microgravity flames for gaseous experiments in orbit and provide a support and design basis for subsequent diversified combustion science experiments. The GCEI is expected to provide valuable data and platform support for subsequent microgravity experiments aboard the CSS.

关键词

中国空间站 / 燃烧科学实验系统 / 燃烧科学实验柜 / 气体燃烧实验插件 / 微重力燃烧

Key words

China Space Station / combustion science application system / combustion science rack / gaseous combustion experiment insert / microgravity combustion

引用本文

导出引用
刘有晟, 李星贤, 温禹哲, . 中国空间站气体射流火焰科学实验进展[J]. 清华大学学报(自然科学版). 2025, 65(9): 1609-1620 https://doi.org/10.16511/j.cnki.qhdxxb.2024.27.039
Yucheng LIU, Xingxian LI, Yuzhe WEN, et al. Gas jet flame science experiments aboard the China Space Station[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(9): 1609-1620 https://doi.org/10.16511/j.cnki.qhdxxb.2024.27.039
中图分类号: V19   

参考文献

1
孔文俊, 张孝谦. 微重力环境下燃烧科学研究的机遇与进展[J]. 燃烧科学与技术, 1997, 3 (4): 424- 436.
KONG W J , ZHANG X Q . Opportunities and progress of research on combustion in microgravity[J]. Journal of Combustion Science and Technology, 1997, 3 (4): 424- 436.
2
张璐, 刘迎春. 空间站微重力燃烧研究现状与展望[J]. 载人航天, 2015, 21 (6): 603- 610.
ZHANG L , LIU Y C . Research status and outlook of microgravity combustion in space station[J]. Manned Spaceflight, 2015, 21 (6): 603- 610.
3
赵建福, 王双峰, 刘强, 等. 中国微重力科学研究回顾与展望[J]. 空间科学学报, 2021, 41 (1): 34- 45.
ZHAO J F , WANG S F , LIU Q , et al. Retrospect and perspective on microgravity science in China[J]. Chinese Journal of Space Science, 2021, 41 (1): 34- 45.
4
胡文瑞. 微重力科学及其应用研究[J]. 中国科学院院刊, 1990, 5 (2): 95- 100.
HU W R . Research on microgravity science and its applications[J]. Bulletin of Chinese Academy of Sciences, 1990, 5 (2): 95- 100.
5
NAYAGAM V , DIETRICH D L , FERKUL P V , et al. Can cool flames support quasi-steady alkane droplet burning?[J]. Combustion and Flame, 2012, 159 (12): 3583- 3588.
6
张孝谦, 韦明罡. 微重力燃烧研究用落塔[J]. 工程热物理学报, 1995, 16 (4): 503- 506.
ZHANG X Q , WEI M G . Microgravity drop tower[J]. Journal of Engineering Thermophysics, 1995, 16 (4): 503- 506.
7
LUO L , ZHOU H Y , SUN Y H , et al. Tsinghua University Freefall Facility (TUFF): A 2.2 second drop tunnel for microgravity research[J]. Microgravity Science and Technology, 2021, 33 (2): 26.
8
张建泉, 董文博, 张永康, 等. 电磁弹射微重力装置的仿真分析[J]. 力学与实践, 2022, 44 (6): 1381- 1393.
ZHANG J Q , DONG W B , ZHANG Y K , et al. Simulation and analysis for the microgravity experiment facility by electromagnetic launch[J]. Mechanics in Engineering, 2022, 44 (6): 1381- 1393.
9
ZHANG J Q , DONG W B , WANG Z , et al. Development of a new microgravity experiment facility with electromagnetic launch[J]. Microgravity Science and Technology, 2021, 33 (6): 68.
10
LIU B , ZHANG Z Z , ZHANG H , et al. Volatile release and ignition behaviors of single coal particles at different oxygen concentrations under microgravity[J]. Microgravity Science and Technology, 2016, 28 (2): 101- 108.
11
孔文俊, 王宝瑞, 夏伟. SJ-10卫星导线特性箱实验装置研制[J]. 物理, 2016, 45 (4): 219- 224.
KONG W J , WANG B R , XIA W . Experimental facility for wire insulation combustion in SJ-10[J]. Physics, 2016, 45 (4): 219- 224.
12
尹永利, 王双峰, 刘仁豪, 等. SJ-10卫星固体材料燃烧实验装置[J]. 空间科学学报, 2016, 36 (4): 492- 496.
YIN Y L , WANG S F , LIU R H , et al. Experimental facility for ignition and burning of solid materials aboard SJ-10 satellite[J]. Chinese Journal of Space Science, 2016, 36 (4): 492- 496.
13
顾逸东. 载人空间站——发展空间科学的重大机遇[C]//中国空间科学学会第七次学术年会会议手册及文集. 大连: 中国空间科学学会, 2009: 91-98.
GU Y D. Manned space station: A major opportunity for the development of space science[C]// Proceedings of the Seventh Academic Conference of the Chinese Society of Space Science. Dalian: Chinese Society of Space Science, 2009: 91-98. (in Chinese)
14
张振忠, 孔文俊, 张华良. 空间站燃烧科学实验系统设计[J]. 空间科学学报, 2020, 40 (1): 72- 78.
ZHANG Z Z , KONG W J , ZHANG H L . Design of combustion science experimental system for China Space Station[J]. Chinese Journal of Space Science, 2020, 40 (1): 72- 78.
15
张晓武. 空间站燃烧科学实验系统燃烧诊断子系统结构设计与分析[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2021.
ZHANG X W. Structural design and analysis for combustion diagnosis subsystem of combustion science experimental system for space station[D]. Beijing: University of Chinese Academy of Sciences (Institute of Engineering Thermophysics, Chinese Academy of Sciences), 2021. (in Chinese)
16
张晓武, 郑会龙, 王琨, 等. 中国空间站燃烧科学实验系统燃烧室设计与分析[J]. 空间科学学报, 2021, 41 (2): 301- 309.
ZHANG X W , ZHENG H L , WANG K , et al. Combustion chamber design and analysis of the space station combustion science experimental system[J]. Chinese Journal of Space Science, 2021, 41 (2): 301- 309.
17
何丽芳, 郑会龙, 王希坤, 等. 中国空间站燃烧科学实验系统PIV单元地面试验[J]. 空间科学学报, 2022, 42 (6): 1152- 1160.
HE L F , ZHENG H L , WANG X K , et al. Ground experiment investigation of PIV unit for combustion science experimental system of China Space Station[J]. Chinese Journal of Space Science, 2022, 42 (6): 1152- 1160.
18
方钰, 郑会龙, 梅德清, 等. 中国空间站燃烧科学实验柜火焰温度及碳烟体积分数地面重建[J]. 中南大学学报(自然科学版), 2023, 54 (10): 4103- 4113.
FANG Y , ZHENG H L , MEI D Q , et al. Ground-based reconstruction of flame temperature and soot volume fraction for combustion science rack aboard China space station[J]. Journal of Central South University (Science and Technology), 2023, 54 (10): 4103- 4113.
19
BURKE S P , SCHUMANN T E W . Diffusion flames[J]. Industrial & Engineering Chemistry, 1928, 20 (10): 998- 1004.
20
HAWTHORNE W R , WEDDELL D S , HOTTEL H C . Mixing and combustion in turbulent gas jets[J]. Symposium on Combustion and Flame, and Explosion Phenomena, 1948, 3 (1): 266- 288.
21
WOHL K , GAZLEY C , KAPP N . Diffusion flames[J]. Symposium on Combustion and Flame, and Explosion Phenomena, 1948, 3 (1): 288- 300.
22
COCHRAN T H , MASICA W J . An investigation of gravity effects on laminar gas-jet diffusion flames[J]. Symposium (International) on Combustion, 1971, 13 (1): 821- 829.
23
HAMINS A , BUNDY M , OH C B , et al. Effect of buoyancy on the radiative extinction limit of low-strain-rate nonpremixed methane-air flames[J]. Combustion and Flame, 2007, 151 (1-2): 225- 234.
24
MEGARIDIS C M , GRIFFIN D W , KONSUR B . Soot-field structure in laminar soot-emitting microgravity nonpremixed flames[J]. Symposium (International) on Combustion, 1996, 26 (1): 1291- 1299.
25
AALBURG C , DIEZ F J , FAETH G M , et al. Shapes of nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still air[J]. Combustion and Flame, 2005, 142 (1-2): 1- 16.
26
DIEZ F J , AALBURG C , SUNDERLAND P B , et al. Soot properties of laminar jet diffusion flames in microgravity[J]. Combustion and Flame, 2009, 156 (8): 1514- 1524.
27
IBARRETA A F , DRISCOLL J F , FEIKEMA D A . Markstein numbers of negatively stretched premixed flames: Microgravity measurements and computations[J]. Proceedings of the Combustion Institute, 2002, 29 (2): 1435- 1443.
28
SUNDERLAND P B , AXELBAUM R L , URBAN D L , et al. Effects of structure and hydrodynamics on the sooting behavior of spherical microgravity diffusion flames[J]. Combustion and Flame, 2003, 132 (1-2): 25- 33.
29
SUNDERLAND P , MENDELSON B , YUAN Z , et al. Shapes of buoyant and nonbuoyant laminar jet diffusion flames[J]. Combustion and Flame, 1999, 116 (3): 376- 386.
30
CARLETON F , DUNN-RANKIN D , WEINBERG F . The optics of small diffusion flames in microgravity[J]. Symposium (International) on Combustion, 1998, 27 (2): 2567- 2572.
31
IDICHERIA C A , BOXX I G , CLEMENS N T . Characteristics of turbulent nonpremixed jet flames under normal- and low-gravity conditions[J]. Combustion and Flame, 2004, 138 (4): 384- 400.
32
FJITA O , ITO K , CHIDA T , et al. Determination of magnetic field effects on a jet diffusion flame in a microgravity environment[J]. Symposium (International) on Combustion, 1998, 27 (2): 2573- 2578.
33
WON S H , KIM J , SHIN M K , et al. Normal and microgravity experiment of oscillating lifted flames in coflow[J]. Proceedings of the Combustion Institute, 2002, 29 (1): 37- 44.
34
FRIEDMAN R, GOKOGLU S A, URBAN D L. Microgravity combustion research: 1999 program and results[R]. Washington: National Aeronautics and Space Administration, 1999.
35
RECKART T. Combustion integrated rack (CIR)[EB/OL]. (2024-01-09)[2021-04-21]. https://www1.grc.nasa.gov/space/iss-research/iss-fcf/cir/.
36
DOTSON K T , SUNDERLAND P B , YUAN Z G , et al. Laminar smoke points of coflowing flames in microgravity[J]. Fire Safety Journal, 2011, 46 (8): 550- 555.
37
MA B , CAO S , GIASSI D , et al. An experimental and computational study of soot formation in a coflow jet flame under microgravity and normal gravity[J]. Proceedings of the Combustion Institute, 2015, 35 (1): 839- 846.
38
SNEGIREV A , KUZNETSOV E , MARKUS E , et al. Transient dynamics of radiative extinction in low-momentum microgravity diffusion flames[J]. Proceedings of the Combustion Institute, 2021, 38 (3): 4815- 4823.
39
GIASSI D , CAO S , BENNETT B A V , et al. Analysis of CH* concentration and flame heat release rate in laminar coflow diffusion flames under microgravity and normal gravity[J]. Combustion and Flame, 2016, 167, 198- 206.
40
CHIEN Y C , STOCKER D P , HEGDE U G , et al. Electric-field effects on methane coflow flames aboard the International Space Station (ISS): ACME E-FIELD flames[J]. Combustion and Flame, 2022, 246, 112443.
41
IRACE P H , LEE H J , WADDELL K , et al. Observations of long duration microgravity spherical diffusion flames aboard the International Space Station[J]. Combustion and Flame, 2021, 229, 111373.
42
Advanced combustion via microgravity experiments integrated science requirements[R/OL]. (2013-09-30)[2024-04-22]. https://www1.grc.nasa.gov/wp-content/uploads/ACME_ISRD_revB_20130930_signed.pdf
43
WEN Y Z , LI L F , LI X X , et al. Extinction of microgravity partially premixed flame aboard the Chinese Space Station[J]. Proceedings of the Combustion Institute, 2024, 40 (1-4): 105574.
44
中国载人航天工程办公室. 中国空间站科学实验资源手册[R/OL]. (2019)[2024-04-22]. https://www.cmse.gov.cn/gfgg/201904/P020200225328481496691.pdf
China Manned Space Engineering Office. Scientific experiment resource manual of the China Space Station. [R/OL]. (2019)[2024-04-22]. https://www.cmse.gov.cn/gfgg/201904/P020200225328481496691.pdf. (in Chinese)
45
VAN OIJEN J A , DONINI A , BASTIAANS R J M , et al. State-of-the-art in premixed combustion modeling using flamelet generated manifolds[J]. Progress in Energy and Combustion Science, 2016, 57, 30- 74.
46
GONZALEZ R C , WINTZ P . Digital image processing[M]. 2nd ed Reading: Addison-Wesley Longman Publishing Co., Inc., 1987.

基金

中国载人航天工程办公室空间应用系统科学实验项目

版权

版权所有,未经授权,不得转载。
PDF(9641 KB)

Accesses

Citation

Detail

段落导航
相关文章

/