微重力下气体扩散火焰碳烟生成特性研究进展

李德政, 张扬, 张海

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (9) : 1638-1652.

PDF(9783 KB)
PDF(9783 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (9) : 1638-1652. DOI: 10.16511/j.cnki.qhdxxb.2024.27.054
微重力燃烧

微重力下气体扩散火焰碳烟生成特性研究进展

作者信息 +

Research progress in soot formation of gas diffusion flames under microgravity

Author information +
文章历史 +

摘要

气体火焰的碳烟生成是微重力科学研究中的热点问题。在微重力下开展气体火焰的碳烟生成研究, 不仅有利于了解空间站等微重力设施中的火灾行为, 也能够规避自然对流影响获得更加理想的火焰, 从而深入理解碳烟的生成过程, 为理论研究提供数据支撑。该文系统描述了微重力下气体火焰碳烟生成规律的研究进展, 重点介绍了微重力气体火焰的碳烟生成路径和烟点研究, 总结了影响微重力下碳烟形成的主要因素。经分析得出, 在微重力下气体扩散火焰的碳烟生成与在常重力下显著不同, 已有研究通过光学诊断等方法揭示了微重力下碳烟生成的基本特征和火焰形态变化规律。结合微重力实验, 已有研究总结出了微重力下气体扩散火焰烟点的预测模型, 并发现烟点与燃料种类、射流直径和伴流速度密切相关。气流流速、氧气浓度、稀释剂、压力、预热和电磁场对碳烟浓度都有较为重要的影响。然而, 当前研究依然以定性描述居多, 与常重力实验相比, 微重力实验已利用的先进诊断技术依然有限, 仍需要开展多因素耦合研究, 结合先进的诊断技术, 进一步深入研究不同燃料多因素耦合对碳烟生成的综合影响, 从而揭示碳烟生成的本质规律, 发展更为完善的碳烟生成和氧化的预测模型。此外, 中国空间站的燃烧实验柜已经配备现有国际上非常先进的微重力燃烧研究诊断技术, 可为该领域的发展提供重要支撑。

Abstract

Significance: Research on soot formation in gas flames under microgravity conditions is a key area in combustion science. Studying soot production in microgravity environments not only elucidates fire behavior in space stations but also eliminates the influence of natural convection, creating a more controlled flame environment for detailed exploration of soot formation processes. The importance of microgravity research lies in its ability to provide essential data for advancing theoretical models and clarifying soot formation mechanisms. This research holds valuable implications for improving combustion technologies, benefiting applications on Earth and in space. Progress: This paper presents a comprehensive review of recent advances in the study of soot formation in gas flames under microgravity conditions. The review systematically summarizes research progress, emphasizing soot formation pathways, smoke point studies, and primary factors influencing soot formation in microgravity. Key methods covered include both qualitative and quantitative analyses, with a focus on advanced diagnostic techniques such as flame emission spectroscopy and laser-induced incandescence, which provide detailed data on soot concentration, particle size, and distribution. The findings indicate that most current research is centered on qualitative descriptions of soot formation, with a marked gap in quantitative analysis and detailed mechanistic insights. The necessity of multifactor coupling studies under microgravity is also highlighted to clarify the combined effects of variables such as fuel type, oxygen concentration, pressure, flow rate, and preheating on soot formation. Advanced diagnostic techniques are increasingly becoming essential tools for measuring soot concentration in space experiments. Conclusions and Prospects: The review concludes that although substantial progress has been achieved, future research should prioritize more detailed quantitative analyses and the development of comprehensive models to uncover fundamental soot formation mechanisms. Continued advancements and application of diagnostic techniques in space experiments are essential. Potential research directions include exploring novel diagnostic methods, improving measurement accuracy and reliability, and examining the effects of various external conditions on soot formation. As space research facilities, such as the Chinese Space Station, continue to advance, these developments will support more comprehensive experimental designs, multifactor coupling studies, and the integration of advanced diagnostic techniques with numerical simulations. These efforts will be critical for devising effective soot control strategies, thereby advancing combustion science and promoting cleaner, more efficient combustion technologies for both space and terrestrial applications. The review calls for collaborative efforts within the scientific community to leverage the advancements in microgravity research to further elucidate soot formation processes.

关键词

微重力燃烧 / 碳烟生成 / 气体燃料 / 影响因素

Key words

microgravity combustion / soot formation / gas fuel / influencing factors

引用本文

导出引用
李德政, 张扬, 张海. 微重力下气体扩散火焰碳烟生成特性研究进展[J]. 清华大学学报(自然科学版). 2025, 65(9): 1638-1652 https://doi.org/10.16511/j.cnki.qhdxxb.2024.27.054
Dezheng LI, Yang ZHANG, Hai ZHANG. Research progress in soot formation of gas diffusion flames under microgravity[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(9): 1638-1652 https://doi.org/10.16511/j.cnki.qhdxxb.2024.27.054
中图分类号: TK16   

参考文献

1
LAW C K , FAETH G M . Opportunities and challenges of combustion in microgravity[J]. Progress in Energy and Combustion Science, 1994, 20 (1): 65- 113.
2
GOPAN A , YANG Z W , KUMFER B M , et al. Effects of inert placement (Zst) on soot and radiative heat flux in turbulent diffusion flames[J]. Energy & Fuels, 2017, 31 (7): 7617- 7623.
3
KUMFER B M , SKEEN S A , AXELBAUM R L . Soot inception limits in laminar diffusion flames with application to oxy-fuel combustion[J]. Combustion and Flame, 2008, 154 (3): 546- 556.
4
RICHTER H , HOWARD J B . Formation of polycyclic aromatic hydrocarbons and their growth to soot: A review of chemical reaction pathways[J]. Progress in Energy and Combustion Science, 2000, 26 (4-6): 565- 608.
5
SUNDERLAND P B , KRISHNAN S S , GORE J P . Effects of oxygen enhancement and gravity on normal and inverse laminar jet diffusion flames[J]. Combustion and Flame, 2004, 136 (1-2): 254- 256.
6
LI Z C , LOU C , ZOU C , et al. Investigation of soot inception limits and chemiluminescence characteristics of laminar coflow diffusion flames in C/O ratio space[J]. Fuel, 2022, 327, 125140.
7
ROSS H D . Microgravity combustion: Fire in free fall[M]. San Diego: Academic Press, 2001.
8
ZHANG Y , KIM M , SUNDERLAND P B , et al. A burner to emulate condensed phase fuels[J]. Experimental Thermal and Fluid Science, 2016, 73, 87- 93.
9
FAETH G M. Homogeneous premixed and nonpremixed flames in microgravity: A review[C]//Proceedings of the AIAA/IKI Microgravity Science Symposium. Moscow, Russia: AIAA, 1991.
10
SACKSTEDER K R . The implication of experimentally controlled gravitational accelerations for combustion science[J]. Symposium (International) on Combustion, 1991, 23 (1): 1589- 1596.
11
LAW C K , CHUNG S H , SRINIVASAN N . Gas-phase quasi-steadiness and fuel vapor accumulation effects in droplet burning[J]. Combustion and Flame, 1980, 38, 173- 198.
12
ZHANG X Q , YUAN L G , WU W D , et al. Some key technics of drop tower experiment device of National Microgravity Laboratory (China) (NMLC)[J]. Science in China Ser. E Engineering & Materials Science, 2005, 48 (3): 305- 316.
13
MARKAN A , SUNDERLAND P B , QUINTIERE J G , et al. A burning rate emulator (BRE) for study of condensed fuel burning in microgravity[J]. Combustion and Flame, 2018, 192, 272- 282.
14
SACKSTEDER K R , TIEN J S . Buoyant downward diffusion flame spread and extinction in partial-gravity accelerations[J]. Symposium (International) on Combustion, 1994, 25 (1): 1685- 1692.
15
SUNDERLAND P B , MORTAZAVI S , FAETH G M , et al. Laminar smoke points of nonbuoyant jet diffusion flames[J]. Combustion and Flame, 1994, 96, 97- 103.
16
LIN K C , FAETH G M , SUNDERLAND P B , et al. Shapes of nonbuoyant round luminous hydrocarbon/air laminar jet diffusion flames[J]. Combustion and Flame, 1999, 116 (3): 415- 431.
17
18
ROJAS-ALVA U , JOMAAS G . A historical overview of experimental solid combustion research in microgravity[J]. Acta Astronautica, 2022, 194, 363- 375.
19
ZHAO H G, QIU J W, WANG Y. System design and flight results of China SJ-10 recoverable microgravity experimental satellite[M]//DUAN E K, LONG M. Life science in space: experiments on board the SJ-10 recoverable satellite. Singapore: Springer, 2019: 13-46.
20
刘晓敏. 梦天舱就位, 中国空间站"T"字成型[J]. 国际太空, 2022 (11): 4- 5.
LIU X M . Mengtian Lab Module is in place, Chinese space station takes shape[J]. Space International, 2022 (11): 4- 5.
21
NASA. 2.2 second drop tower[EB/OL]. (2022-11-21)[2024-05-23]. https://www1.grc.nasa.gov/facilities/drop/.
22
NASA. Zero gravity research facility[EB/OL]. [2022-11-21]. https://www1.grc.nasa.gov/facilities/zero-g.
23
REIMANN J , WILL S . Optical diagnostics on sooting laminar diffusion flames in microgravity[J]. Microgravity-Science and Technology, 2005, 16 (1): 333- 337.
24
ITO H , FUJITA O , ITO K . Agglomeration of soot particles in diffusion flames under microgravity[J]. Combustion and Flame, 1994, 99 (2): 363- 370.
25
ZHANG C , YANG C , HU L , et al. Beijing drop tower microgravity adjustment towards 10-3~10-5 g level by cold-gas thrusters[J]. Microgravity Science and Technology, 2023, 35 (4): 39.
26
LUO L , ZHOU H Y , SUN Y H , et al. Tsinghua University Freefall Facility (TUFF): A 2.2 second drop tunnel for microgravity research[J]. Microgravity Science and Technology, 2021, 33 (2): 26.
27
张建泉, 董文博, 张永康, 等. 电磁弹射微重力装置的仿真分析[J]. 力学与实践, 2022, 44 (6): 1381- 1393.
ZHANG J Q , DONG W B , ZHANG Y K , et al. Simulation and analysis for the microgravity experiment facility by electromagnetic launch[J]. Mechanics in Engineering, 2022, 44 (6): 1381- 1393.
28
MORTAZAVI S, SUNDERLAND P, JURNG J, et al. Structure of soot-containing laminar jet diffusion flames[C]//Proceedings of the 31st Aerospace Sciences Meeting. Reno, NV, USA: AIAA, 1993.
29
ABBUD-MADRID A, STROUD C, OMALY P, et al. Combustion of bulk magnesium in carbon dioxide under reduced-gravity conditions[C]//37th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: AIAA, 1999.
30
BAKER P W , LEFF L . The effect of simulated microgravity on bacteria from the mir space station[J]. Microgravity-Science and Technology, 2004, 15 (1): 35- 41.
31
PENLEY N J , SCHAFER C P , BARTOE J D F . The international space station as a microgravity research platform[J]. Acta Astronautica, 2002, 50 (11): 691- 696.
32
方钰. 中国空间站燃烧科学实验系统火焰辐射成像诊断技术研究[D]. 镇江: 江苏大学, 2022.
FANG Y. Research on diagnostic technology based on flame radiation imaging in combustion science experimental system aboard China Space Station[D]. Zhenjiang: Jiangsu University, 2022. (in Chinese)
33
KUMAGAI S , ISODA H . Combustion of fuel droplets in a falling chamber[J]. Symposium (International) on Combustion, 1957, 6 (1): 726- 731.
34
KIMZEY J H. Skylab experiment M479 zero gravity flammability[C]//The 3rd Space Processing Symposium, Skylab Results. Houston, USA: NASA, 1974.
35
LEGROS G , FUENTES A , ROUVREAU S , et al. Transport mechanisms controlling soot production inside a non-buoyant laminar diffusion flame[J]. Proceedings of the Combustion Institute, 2009, 32 (2): 2461- 2470.
36
FUENTES A , ROUVREAU S , JOULAIN P , et al. Sooting behavior dynamics of a non-buoyant laminar diffusion flame[J]. Combustion Science and Technology, 2007, 179 (1-2): 3- 19.
37
BRAHMI L , VIETORIS T , ROUVREAU S , et al. Microgravity laminar diffusion flame in a perpendicular fuel and oxidizer stream configuration[J]. AIAA Journal, 2005, 43 (8): 1725- 1733.
38
TORERO J L, WANG H Y, JOULAIN P, et al. Flat plate diffusion flames: Numerical simulation and experimental validation for different gravity levels; proceedings of the Materials and Fluids Under low Gravity[C]//Proceedings of the IXth European Symposium on Gravity-Dependent Phenomena in Physical Sciences Held. Berlin, Germany: Springer, 1995.
39
EDELMAN R B , FORTUNE O F , WEILERSTEIN G , et al. An analytical and experimental investigation ofgravity effects upon laminar gas jet-diffusion flames[J]. Symposium (International) on Combustion, 1973, 14 (1): 399- 412.
40
EDELMAN R B , BAHADORI M Y . Effects of buoyancy on gas-jet diffusion flames: Experiment and theory[J]. Acta Astronautica, 1986, 13 (11-12): 681- 688.
41
EDELMAN R, BAHADORI Y, OLSON S, et al. Laminar diffusion flames under micro-gravity conditions[C]//Proceedings of the 26th Aerospace Sciences Meeting. Reno, NV, USA: AIAA, 1988.
42
BAHADORI M, STOCKER D, EDELMAN R. Effects of pressure on microgravity hydrocarbon diffusion flames[C]//Proceedings of the 28th Aerospace Sciences Meeting. Reno, NV, USA: AIAA, 1990.
43
SACKSTEDER K R . Facilities for microgravity combustion research[J]. Acta Astronautica, 1990, 21 (5): 323- 329.
44
KU J C , GRIFFIN D W , GREENBERG P S , et al. Buoyancy-induced differences in soot morphology[J]. Combustion and Flame, 1995, 102 (1-2): 216- 218.
45
MEGARIDIS C M , GRIFFIN D W , KONSUR B . Soot-field structure in laminar soot-emitting microgravity nonpremixed flames[J]. Symposium (International) on Combustion, 1996, 26 (1): 1291- 1299.
46
WAKAYAMA N I , ITO H , KURODA Y , et al. Magnetic support of combustion in diffusion flames under microgravity[J]. Combustion and Flame, 1996, 107 (1-2): 187- 192.
47
GREENBERG P S , KU J C . Soot volume fraction maps for normal and reduced gravity laminar acetylene jet diffusion flames[J]. Combustion and Flame, 1997, 108 (1-2): 227- 230.
48
DAI Z, LIN K C, SUNDERLAND P B, et al. Flow/soot-formation interactions in nonbuoyant laminar diffusion flames[R]. Ann Arbor, Michigan: The University of Michigan, 2002.
49
OLSON S L , MILLER F J . Experimental comparison of opposed and concurrent flame spread in a forced convective microgravity environment[J]. Proceedings of the Combustion Institute, 2009, 32 (2): 2445- 2452.
50
J , KUHLMANN S A , WILL S . Investigations on soot formation in heptane jet diffusion flames by optical techniques[J]. Microgravity Science and Technology, 2010, 22 (4): 499- 505.
51
SUARDI M B , BIN RAZALI M A , BIN KHALID A , et al. Development for thermophoresis experimental under microgravity condition[J]. IOP Conference Series: Materials Science and Engineering, 2016, 160 (1): 012034.
52
MARKAN A , BAUM H R , SUNDERLAND P B , et al. Transient ellipsoidal combustion model for a porous burner in microgravity[J]. Combustion and Flame, 2020, 212, 93- 106.
53
URBAN D L , YUAN Z G , SUNDERLAND P B , et al. Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames[J]. AIAA Journal, 1998, 36 (8): 1346- 1360.
54
URBAN D L , YUAN Z G , SUNDERLAND P B , et al. Smoke-point properties of non-buoyant round laminar jet diffusion flames[J]. Proceedings of the Combustion Institute, 2000, 28 (2): 1965- 1972.
55
DIEZ F J , AALBURG C , SUNDERLAND P B , et al. Soot properties of laminar jet diffusion flames in microgravity[J]. Combustion and Flame, 2009, 156 (8): 1514- 1524.
56
DOTSON K T , SUNDERLAND P B , YUAN Z G , et al. Laminar smoke points of coflowing flames in microgravity[J]. Fire Safety Journal, 2011, 46 (8): 550- 555.
57
DOTSON K, SUNDERLAND P, YUAN Z G, et al. Laminar smoke points in coflow measured aboard the international space station[C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida: AIAA, 2012.
58
方钰, 郑会龙, 梅德清, 等. 中国空间站燃烧科学实验柜火焰温度及碳烟体积分数地面重建[J]. 中南大学学报(自然科学版), 2023, 54 (10): 4103- 4113.
FANG Y , ZHENG H L , MEI D Q , et al. Ground-based reconstruction of flame temperature and soot volume fraction for combustion science rack aboard China space station[J]. Journal of Central South University (Science and Technology), 2023, 54 (10): 4103- 4113.
59
KAPLAN C R , ORAN E S , KAILASANATH K , et al. Gravitational effects on sooting diffusion flames[J]. Symposium (International) on Combustion, 1996, 26 (1): 1301- 1309.
60
SANTORO R J , SEMERJIAN H G , DOBBINS R A . Soot particle measurements in diffusion flames[J]. Combustion and Flame, 1983, 51, 203- 218.
61
SANTORO R J , YEH T T , HORVATH J J , et al. The transport and growth of soot particles in laminar diffusion flames[J]. Combustion Science and Technology, 1987, 53 (2-3): 89- 115.
62
BRIAN SPALDING D. Chapter 9-the laminar jet[M]//BRIAN SPALDING D. Combustion and Mass Transfer. Pergamon: Elsevier, 1979: 169-184.
63
GLASSMAN I . Soot formation in combustion processes[J]. Symposium (International) on Combustion, 1989, 22 (1): 295- 311.
64
LIN K C , FAETH G M . Hydrodynamic suppression of soot emissions in laminar diffusion flames[J]. Journal of Propulsion and Power, 1996, 12 (1): 10- 17.
65
YOUSEF BAHADORI M , EDELMAN R B , STOCKER D P , et al. Ignition and behavior of laminar gas-jet diffusion flames in microgravity[J]. AIAA Journal, 1990, 28 (2): 236- 244.
66
YOUSEF BAHADORI M, STOCKER D P, VAUGHAN D F, et al. Chapter 4: Effects of buoyancy on laminar, transitional, and turbulent gas jet diffusion flames[M]//WILLIAMS F A, OPPENHEIM A K, OLFE D B, et al. Modern Developments in Energy, Combustion and Spectroscopy. Pergamon: Elsevier, 1993: 49-66.
67
DOBBINS R A , MEGARIDIS C M . Morphology of flame-generated soot as determined by thermophoretic sampling[J]. Langmuir, 1987, 3 (2): 254- 259.
68
KONSUR B , MEGARIDIS C M , GRIFFIN D W . Fuel preheat effects on soot-field structure in laminar gas jet diffusion flames burning in 0-g and 1-g[J]. Combustion and Flame, 1999, 116 (3): 334- 347.
69
LI Y T. Flame and smoke characterization in reduced gravity for enhanced spacecraft safety[D]. Paris: Sorbonne Université, 2022.
70
MICHELSEN H A , SCHULZ C , SMALLWOOD G J , et al. Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications[J]. Progress in Energy and Combustion Science, 2015, 51, 2- 48.
71
JVNGST N , KAISER S A . Visualization of soot formation from evaporating fuel films by laser-induced fluorescence and incandescence[J]. Proceedings of the Combustion Institute, 2021, 38 (1): 1089- 1097.
72
CHOI M Y , MULHOLLAND G W , HAMINS A , et al. Comparisons of the soot volume fraction using gravimetric and light extinction techniques[J]. Combustion and Flame, 1995, 102 (1-2): 161- 169.
73
GREENBERG P S , KU J C . Soot volume fraction imaging[J]. Applied Optics, 1997, 36 (22): 5514- 5522.
74
FUJITA O , ITO K . Observation of soot agglomeration process with aid of thermophoretic force in a microgravity jet diffusion flame[J]. Experimental Thermal and Fluid Science, 2002, 26 (2-4): 305- 311.
75
DE IULIIS S , BARBINI M , BENECCHI S , et al. Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation[J]. Combustion and Flame, 1998, 115 (1-2): 253- 261.
76
HUANG Q X , WANG F , LIU D , et al. Reconstruction of soot temperature and volume fraction profiles of an asymmetric flame using stereoscopic tomography[J]. Combustion and Flame, 2009, 156 (3): 565- 573.
77
LIU H W , ZHENG S , ZHOU H C . Measurement of soot temperature and volume fraction of axisymmetric ethylene laminar flames using hyperspectral tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66 (2): 315- 324.
78
艾育华. 基于辐射成像的扩散火焰温度和烟黑浓度分布研究[D]. 武汉: 华中科技大学, 2006.
AI Y H. Study on profiles of the temperature and soot concentration by the radiative imaging[D]. Wuhan: Huazhong University of Science and Technology, 2006. (in Chinese)
79
MA B , CAO S , GIASSI D , et al. An experimental and computational study of soot formation in a coflow jet flame under microgravity and normal gravity[J]. Proceedings of the Combustion Institute, 2015, 35 (1): 839- 846.
80
STOCKER D P, TAKAHASHI F, MARK HICKMAN J, et al. Gaseous non-premixed flame research planned for the international space station[C]//Proceedings of the 2014 Spring Technical Meeting of the Central States Section of the Combustion Institute. USA: NASA, 2014.
81
STOCKER D P. Recent research on flames of gaseous fuel aboard the international space station[C]//Proceedings of the 33rd Japanese Conference on Microgravity Science and Application. Cleveland, OH, USA: NASA, 2021.
82
STOCKER D P. Laminar non-premixed flames of gaseous fuel aboard the international space station[C]//Proceedings of the 2022 Spring Technical Meeting of the Central States Section of The Combustion Institute. Detroit, MI, USA: NASA, 2022.
83
MEGARIDIS CONSTANTINE M , DOBBINS RICHARD A . Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames[J]. Combustion Science and Technology, 1989, 66 (1-3): 1- 16.
84
KÖYLÜ Ü Ö , FAETH G M . Carbon monoxide and soot emissions from liquid-fueled buoyant turbulent diffusion flames[J]. Combustion and Flame, 1991, 87 (1): 61- 76.
85
BRIAN SPALDING D. Chapter 10: The laminar diffusion flame[M]//BRIAN SPALDING D. Combustion and Mass Transfer. Pergamon: Elsevier, 1979: 185-198.
86
WANG Y , CHUNG S H . Soot formation in laminar counterflow flames[J]. Progress in Energy and Combustion Science, 2019, 74, 152- 238.
87
WAGNER H G G . Soot formation in combustion[J]. Symposium (International) on Combustion, 1979, 17 (1): 3- 19.
88
KONG W J , LIU F S . Numerical study of the effects of gravity on soot formation in laminar coflow methane/air diffusion flames under different air stream velocities[J]. Combustion Theory and Modelling, 2009, 13 (6): 993- 1023.
89
GÜLDER Ö L . Effects of oxygen on soot formation in methane, propane, and n-Butane diffusion flames[J]. Combustion and Flame, 1995, 101 (3): 302- 310.
90
BHATIA P , SINGH R . Effect of oxygen enrichment in propane laminar diffusion flames under microgravity and earth gravity conditions[J]. Microgravity Science and Technology, 2017, 29 (3): 177- 190.
91
GLASSMAN I . Sooting laminar diffusion flames: Effect of dilution, additives, pressure, and microgravity[J]. Symposium (International) on Combustion, 1998, 27 (1): 1589- 1596.
92
NASA. Coflow Laminar Diffusion Flame (CLD Flame) [EB/OL]. (2021-03-02)[2024-05-23]. https://www1.grc.nasa.gov/space/iss-research/iss-fcf/combustion-science/acme/experiments/cld-flame/.
93
FLOWER W L , BOWMAN C T . Soot production in axisymmetric laminar diffusion flames at pressures from one to ten atmospheres[J]. Symposium (International) on Combustion, 1988, 21 (1): 1115- 1124.
94
CHAREST M R J , GROTH C P T , GÜLDER Ö L . Effects of gravity and pressure on laminar coflow methane-air diffusion flames at pressures from 1 to 60 atmospheres[J]. Combustion and Flame, 2011, 158 (5): 860- 875.
95
CHIEN Y C , STOCKER D P , HEGDE U G , et al. Electric-field effects on methane coflow flames aboard the international space station (ISS): ACME E-FIELD flames[J]. Combustion and Flame, 2022, 246, 112443.

基金

国家重点研发计划项目(2021YFA0716201)
中国载人航天工程空间应用系统项目

版权

版权所有,未经授权,不得转载。
PDF(9783 KB)

Accesses

Citation

Detail

段落导航
相关文章

/