人工鱼礁对海上风电基础周边水动力环境的影响及冲刷防治效果

高源, 陈建军, 雷宇, 刘瑞超, 毕成, 李晗, 袁兢

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (8) : 1552-1560.

PDF(9328 KB)
PDF(9328 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (8) : 1552-1560. DOI: 10.16511/j.cnki.qhdxxb.2025.21.015
水利水电工程

人工鱼礁对海上风电基础周边水动力环境的影响及冲刷防治效果

作者信息 +

Preventing scour at offshore monopile foundation using artificial reefs: Hydrodynamic processes and scour reduction

Author information +
文章历史 +

摘要

随着海洋牧场及海上风电的快速发展,将人工鱼礁与固定式海上风电相结合,在修复海洋生态的同时防治基础冲刷,是高效利用海域资源的一个构想,但相关的定量研究十分缺乏。该文以三角形人工鱼礁为研究对象,通过水槽实验与数值模拟,探究了其绕桩排布下的流场特点及冲刷防治效果。研究表明,在鱼礁群的作用下,桩周围会出现狭管效应、阻滞效应、导流效应,改变了平均流速和湍流的时空分布。通过数值模拟计算了结构物范围内的床剪切应力及空间梯度,揭示了鱼礁影响冲刷的机理。通过缩比尺实验,证实了三角形鱼礁群对减少桩基础冲刷深度有一定效果。

Abstract

Objective: With the growth of marine ranching and offshore wind power, finding sustainable ways to protect the ocean environment has become vital. Offshore wind power, a key renewable energy source, helps reduce carbon emissions and promote clean energy. Meanwhile, marine ranching enhances biodiversity and supports ocean conservation by cultivating marine organisms. A new approach combines these benefits by integrating artificial reefs with fixed offshore wind turbines. This strategy aims to restore marine ecosystems while mitigating foundation scouring caused by turbine-seawater interactions. This dual-purpose solution protects marine life while improving wind turbine stability. Despite growing interest in this integrated approach, quantitative research on the hydrodynamic effects of artificial reefs around offshore wind turbine foundations remains limited. This knowledge gap hinders the optimization of reef design for effective scour prevention. Among various types, triangular artificial reefs offer unique flow dynamical properties, but their potential remains underexplored. Methods: To address this knowledge gap, this study focuses on triangular artificial reefs. The study uses experiments to investigate how artificial reefs influence the flow field around offshore wind turbine foundations. Results show that reefs placed near turbine bases significantly alter the local flow environment, triggering key phenomena like the venturi effect, blocking effect, and flow guidance. These effects change the mean flow velocity and the spatiotemporal distribution of turbulence within the flow field, which in turn profoundly affect the dynamics of the surrounding environment. The venturi effect, for example, accelerates water as it flows through narrow gaps between reefs, creating areas of increased velocity. Conversely, the blocking effect slows flow velocity in certain regions, creating sheltered zones that may benefit marine life. Numerical simulations were conducted to analyze the bottom shear stress and the spatial gradient of the flow field. These simulations revealed the mechanisms through which artificial reefs alter scouring around offshore wind turbine foundations. By modifying flow patterns, the reefs effectively lower scour intensity at the base of the piles, providing a protective shield for the foundations. Results: The study found that the shear stress gradient, particularly changes in shear stress across the flow field, directly affects the extent of scour. Areas with higher shear stress experience more intense scouring, while regions with lower shear stress show reduced effects. This information is crucial for designing effective scour protection systems to enhance the durability and stability of offshore wind turbine foundations. Experiments were conducted to further investigate the role of artificial reefs in preventing scour. The results showed that the proper arrangement and configuration of triangular artificial reefs significantly reduced scour around turbine foundations. The shear stress gradient was found to be a key factor affecting how the flow is redirected and how well the seabed remains stable around the turbine piles. Conclusions: This study provides valuable insights into the hydrodynamic characteristics and scour protection potential of artificial reefs when combined with offshore wind turbine piles. The findings deepen our understanding of how these reefs influence flow dynamics and provide practical recommendations for optimizing the design and deployment of artificial reefs as a sustainable solution. By addressing marine ecosystem restoration and structural protection, this research serves as a foundation for future studies that aim to develop more efficient and environmentally friendly offshore wind power solutions.

关键词

人工鱼礁 / 海上风电 / 数值模拟 / 防冲刷

Key words

artificial reefs / offshore wind power / numerical simulation / scour protection

引用本文

导出引用
高源, 陈建军, 雷宇, . 人工鱼礁对海上风电基础周边水动力环境的影响及冲刷防治效果[J]. 清华大学学报(自然科学版). 2025, 65(8): 1552-1560 https://doi.org/10.16511/j.cnki.qhdxxb.2025.21.015
Yuan GAO, Jianjun CHEN, Yu LEI, et al. Preventing scour at offshore monopile foundation using artificial reefs: Hydrodynamic processes and scour reduction[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(8): 1552-1560 https://doi.org/10.16511/j.cnki.qhdxxb.2025.21.015
中图分类号: TV131.6   

参考文献

1
于定勇, 赵伟, 王逢雨, 等. 不同布设间距下梯形台人工鱼礁体的水动力特性研究[J]. 海洋与湖沼, 2020, 51 (2): 283- 292.
YU D Y , ZHAO W , WANG F Y , et al. Trapezoid artificial reefs in different deployment spacing: Physical and numerical simulations[J]. Oceanologia et Limnologia Sinica, 2020, 51 (2): 283- 292.
2
郑延璇, 梁振林, 关长涛, 等. 三种叠放形式的圆管型人工鱼礁流场效应数值模拟与PIV试验研究[J]. 海洋与湖沼, 2014, 45 (1): 11- 19.
ZHENG Y X , LIANG Z L , GUAN C T , et al. Numerical simulation and experimental study on flow field of artificial reefs in three tube-stacking layouts[J]. Oceanologia et Limnologia Sinica, 2014, 45 (1): 11- 19.
3
刘扬, 黄国兴. 六角型人工鱼礁流场效应试验研究[J]. 中国水运, 2021 (11): 60- 62.
LIU Y , HUANG G X . Experimental study on flow field effects of hexagonal artificial reefs[J]. China Water Transport, 2021 (11): 60- 62.
4
张硕, 张世东, 初文华, 等. 六边形开口方形人工鱼礁水动力性能模型实验[J]. 水产学报, 2020, 44 (11): 1903- 1912.
ZHANG S , ZHANG S D , CHU W H , et al. Model experiment of hydrodynamic performance of square artificial reefs with hexagonal openings[J]. Journal of Fisheries of China, 2020, 44 (11): 1903- 1912.
5
张硕, 张世东, 胡夫祥, 等. 六边形开口方形人工鱼礁阻力系数数值模拟与模型试验比较研究[J]. 中国水产科学, 2020, 27 (11): 1350- 1359.
ZHANG S , ZHANG S D , HU F X . Comparison of a numerical simulation and a test model of a hexagonal and square opening artificial reef[J]. Journal of Fishery Sciences of China, 2020, 27 (11): 1350- 1359.
6
方继红, 林军, 杨伟, 等. 双层十字翼型人工鱼礁流场效应的数值模拟[J]. 上海海洋大学学报, 2021, 30 (4): 743- 754.
FANG J H , LIN J , YANG W , et al. Numerical simulation of flow field effect around the double-layer cross-wing artificial reef[J]. Journal of Shanghai Ocean University, 2021, 30 (4): 743- 754.
7
于定勇, 王逢雨, 钟延超, 等. 不同布设间距下方型人工鱼礁体的水动力特性数值研究[J]. 中国海洋大学学报, 2020, 50 (2): 126- 134.
YU D Y , WANG F Y , ZHONG Y C , et al. Numerical research on hydrodynamic characteristics of artificial reefs with different disposal spaces[J]. Periodical of Ocean University of China, 2020, 50 (2): 126- 134.
8
崔恩苹, 张永强, 祝琳, 等. 千里岩岛西部人工鱼礁建设对周边海域水动力影响的数值模拟[J]. 海洋地质前沿, 2021, 37 (2): 10- 20.
CUI E P , ZHANG Y Q , ZHU L , et al. Numerical simulation of the influence of artifical reefs on marine hydrodynamics to the west of Qianliyan island[J]. Marine Geology Frontiers, 2021, 37 (2): 10- 20.
9
NISUGI K , HAYASE T , SHIRAI A . Fundamental study of hybrid wind tunnel integrating numerical simulation and experiment in analysis of flow field[J]. JSME International Journal Series B Fluids and Thermal Engineering, 2004, 47 (3): 593- 604.
10
刘心媚, 郑艳娜, 陈昌平, 等. 框架型与沉箱型人工鱼礁绕流特性的数值模拟[J]. 大连海洋大学学报, 2019, 34 (1): 133- 138.
LIU X M , ZHENG Y N , CHEN C P , et al. Numerical simulation of flow around frame and caisson artificial reef models[J]. Journal of Dalian Ocean University, 2019, 34 (1): 133- 138.
11
谭赛飞, 王选志, 张美玲, 等. 长方体框架型人工鱼礁的流场效应[J/OL]. 应用力学学报. (2023-03-01)[2024-11-01]. http://kns.cnki.net/kcms/detail/61.1112.o3.20230227.1445.020.html.
TAN S F, WANG X Z, ZHANG M L, et al. Flow field effect of cuboid frame artificial reef[J/OL]. Chinese Journal of Applied Mechanics. (2023-03-01)[2024-11-01]. http://kns.cnki.net/kcms/detail/61.1112.o3.20230227.1445.020.html. (in Chinese)
12
成泽毅, 叶灿, 高宇, 等. 不同布设间距和来流速度下方型人工鱼礁上升流效应的数值模拟[J]. 海洋与湖沼, 2023, 54 (3): 665- 678.
CHENG Z Y , YE C , GAO Y , et al. Scheme analysis of upwelling effects in artificial reefs in different layouts[J]. Oceanologia et Limnologia Sinica, 2023, 54 (3): 665- 678.
13
JIANG Z Y , LIANG Z L , TANG Y L , et al. Numerical simulation and experimental study of the hydrodynamics of a modeled reef located within a current[J]. Chinese Journal of Oceanology and Limnology, 2010, 28 (2): 267- 273.
14
黄远东, 龙催, 邓济通. 三棱柱型人工鱼礁绕流流场的CFD分析[J]. 水资源与水工程学报, 2013, 24 (1): 1- 4.
HUANG Y D , LONG C , DENG J T . Analysis of water flow field based on CFD at a three-prism artificial reef[J]. Journal of Water Resources and Water Engineering, 2013, 24 (1): 1- 4.
15
魏丽莹, 张宁川. 六角型人工鱼礁流场效应数值模拟[J]. 中国水运, 2023 (2): 110- 112.
WEI L Y , ZHANG N C . Numerical simulation of flow field effects of hexagonal artificial reefs[J]. China Water Transport, 2023 (2): 110- 112.
16
LIU Y , ZHAO Y P , DONG G H , et al. A study of the flow field characteristics around star-shaped artificial reefs[J]. Journal of Fluids and Structures, 2013, 39, 27- 40.
17
朱嵘华, 王恒丰, 陈鹏宇, 等. 海上风电基础仿生草防冲刷试验[J]. 中国海洋平台, 2024, 39 (1): 80-84, 90.
ZHU R H , WANG H F , CHEN P Y , et al. Model test of offshore wind turbine foundation scour prevention measures based on bionic grass[J]. China Offshore Platform, 2024, 39 (1): 80-84, 90.
18
范少涛, 朱嵘华, 陶梓健, 等. 某海上风电场基础结构防冲刷物理模型试验[J]. 中国海洋平台, 2023, 38 (6): 34-39, 67.
FAN S T , ZHU R H , TAO Z J , et al. Physical model test on anti-scouring of offshore wind farm foundation structure[J]. China Offshore Platform, 2023, 38 (6): 34-39, 67.
19
史卜涛, 苗运赞, 迟洪明, 等. 海上风机单桩基础海床冲刷模拟及防冲刷结构设计[J]. 建筑结构, 2023, 53 (增刊1): 2988- 2991.
SHI B T , MIAO Y Z , CHI H M , et al. Seabed scouring simulation and anti-scour structure design of offshore wind turbine single pile foundation[J]. Building Structure, 2023, 53 (S1): 2988- 2991.
20
王锋, 杨荣, 黄攀, 等. 海上风电单桩基础冲刷防护方案设计与应用[J]. 电工技术, 2023 (10): 73-75, 79.
WANG F , YANG R , HUANG P , et al. Design and application of erosion protection scheme for offshore wind monopile foundation[J]. Electric Engineering, 2023 (10): 73-75, 79.
21
张哲, 郑国富. 海水养殖与海上风电融合发展研究[J]. 中国渔业经济, 2023, 41 (2): 90- 98.
ZHANG Z , ZHENG G F . Research on the integration development of mariculture and offshore wind power[J]. Chinese Fisheries Economics, 2023, 41 (2): 90- 98.
22
罗茵方, 方琼玟. "海洋牧场+海上风电"不止于构想[J]. 海洋与渔业, 2019 (2): 73- 75.
LUO Y F , FANG Q W . "Marine ranching + offshore wind power" is more than just a concept[J]. Ocean and Fisheries, 2019 (2): 73- 75.
23
杨红生, 茹小尚, 张立斌, 等. 海洋牧场与海上风电融合发展: 理念与展望[J]. 中国科学院院刊, 2019, 34 (6): 700- 707.
YANG H S , RU X S , ZHANG L B , et al. Industrial convergence of marine ranching and offshore wind power: concept and prospect[J]. Bulletin of Chinese Academy of Sciences, 2019, 34 (6): 700- 707.

版权

版权所有,未经授权,不得转载。
PDF(9328 KB)

Accesses

Citation

Detail

段落导航
相关文章

/