基于稳定性演化的高拱坝复杂坝基软弱带加固研究

刘要来, 庞智勇, 余记远, 程立, 邹杰, 刘耀儒

清华大学学报(自然科学版) ›› 2026, Vol. 66 ›› Issue (2) : 285-298.

PDF(18309 KB)
PDF(18309 KB)
清华大学学报(自然科学版) ›› 2026, Vol. 66 ›› Issue (2) : 285-298. DOI: 10.16511/j.cnki.qhdxxb.2025.21.021
水利水电工程

基于稳定性演化的高拱坝复杂坝基软弱带加固研究

作者信息 +

Study on the reinforcement of weak structural surfaces in complex foundation of high arch dam based on stability evolution

Author information +
文章历史 +

摘要

坝基稳定是高拱坝安全的核心, 复杂坝基中软弱带的加固处理设计是高拱坝设计中的难点问题。提出了一种基于能量指标的坝基软弱带稳定评价和加固处理确定方法, 建立了基于能量耗散率及域内积分变化的稳定性演化分析模型, 基于软弱带的稳定性演化规律确定需要加固的关键软弱带及其加固部位。将该方法用于某高拱坝坝基平行断层组的稳定性分析和加固处理设计中。最后综合多项指标对确定的加固方案的效果进行了分析评价。结果表明, 坝肩断层在蓄水后能量耗散率及其域内积分呈现先迅速增大、后逐渐减小、最终趋于稳定的趋势。同时, 下游侧断层的能量耗散率峰值出现时间晚于拱肩断层的, 表明拱端推力在地基中的传递需要时间, 对结构面稳定性态的扰动作用存在一定的时空滞后性。与拱端下游侧相比, 拱端上游侧断层受水荷载引起的工程扰动的影响较小, 而下游侧断层的薄弱部位主要分布在与拱端相交处及沿断层产状延伸的下游侧区域。左岸的f123和f120断层为影响拱坝-地基整体稳定的关键断层, f123断层的2 440~2 470 m高程区域和f120断层的2 395~2 425 m高程区域为相对薄弱的关键加固部位。基于坝体位移、断层屈服区、能量耗散率及其域内积分指标的对比分析表明, 加固处理对拱坝-基础的整体稳定具有一定的改善作用。

Abstract

Objective: High arch dams impose stringent requirements to ensure safety, requiring robust bearing capacity, deformation control, and resistance to seepage failure. The stability of the dam foundation serves as the cornerstone of the entire arch dam system. During operation, the enormous thrust generated by arch abutments acts on the dam-foundation interface, potentially inducing instability risks such as macroscopic fractures and shear sliding, particularly in weak foundation zones. These risks, if left unchecked, can compromise dam safety and may trigger catastrophic failure. Addressing weak zone reinforcement design in complex dam foundations poses a significant challenge, as no standardized system currently exists for prioritizing reinforcements or quantifying stability evaluation indicators. Methods: To address this gap, this study proposes an energy-based method for stability evaluation and reinforcement design of weak dam foundation zones. A stability evolution analysis model was established using energy dissipation rate and domain integral variation, enabling the identification of critical weak zones and their evolutionary patterns. The study employed a three-dimensional numerical model of the arch dam-foundation system, accounting for complex geological factors such as faults, abutment slopes, and dam geometry. A thermodynamically driven creep constitutive model with internal variables was employed to conduct three-dimensional numerical simulations, revealing the stability evolution process of weak foundation zones. By analyzing energy dissipation rate curves and domain integrals, critical moments (marked by peak dissipation rates) and vulnerable areas (highlighted by energy concentration zones) were pinpointed. This method was then applied to parallel fault groups in a high arch dam foundation, with the reinforcement effectiveness analyzed in terms of energy dissipation rates, dam deformation, fault yield zones, and results from comparative testing using the super-water unit weight method. Results: Results indicate that energy dissipation rates and domain integrals for abutment faults initially increased rapidly after reservoir impoundment, gradually decreased, and eventually stabilized. The stability evolution of dam foundation faults under impoundment exhibits distinct time-dependent behavior, progressing through three phases: instability, transition, and stabilization. A significant observation is the delayed occurrence of peak energy dissipation rates in downstream faults, reflecting a spatiotemporal hysteresis in arch thrust transmission. During normal operations, the thrust from the arch extends its influence on deep foundation stability to a distance approximately twice the width of the arch abutment. However, its impact on downstream stability ranges between 2-3 times the abutment width. Comparative analysis using the super-water unit weight method demonstrated reduced dam deformation, improved fault yield zone distribution, and significant decreases in energy dissipation rates and domain integrals for critical faults after reinforcement. Conclusions: The proposed method reveals spatiotemporal hysteresis in arch thrust transmission and its disturbance on structural stability. For multifault dam foundations, upstream faults exhibit less susceptibility to hydraulic disturbances when compared to downstream faults. Weak zones in downstream faults are primarily concentrated near their intersections with the dam abutment as well as along the strike direction. The f123 and f120 faults on the left bank were identified as critical to global stability, with key reinforcement areas at elevations of 2 440-2 470 m (f123) and 2 395-2 425 m (f120). Targeted reinforcement measures effectively enhanced fault and foundation stability, significantly improving the overall stability of the arch dam-foundation system.

关键词

高拱坝 / 软弱带 / 稳定性演化 / 加固处理设计 / 能量耗散率

Key words

high arch dams / weak zone / stability evolution / reinforcement design / energy dissipation rate

引用本文

导出引用
刘要来, 庞智勇, 余记远, . 基于稳定性演化的高拱坝复杂坝基软弱带加固研究[J]. 清华大学学报(自然科学版). 2026, 66(2): 285-298 https://doi.org/10.16511/j.cnki.qhdxxb.2025.21.021
Yaolai LIU, Zhiyong PANG, Jiyuan YU, et al. Study on the reinforcement of weak structural surfaces in complex foundation of high arch dam based on stability evolution[J]. Journal of Tsinghua University(Science and Technology). 2026, 66(2): 285-298 https://doi.org/10.16511/j.cnki.qhdxxb.2025.21.021
中图分类号: TP393.1   

参考文献

1
GUO H Q , XU W Y , WU Z R . Study on coupling influences of concrete dam foundation seepage, stress, and creep on structure behaviors of dam body[J]. Elsevier Geo-Engineering Book Series, 2004, 2, 753- 758.
2
程立, 吴亚军, 魏志远. 特高拱坝建设管理与施工技术总结与展望[J]. 水力发电, 2020, 46(10): 73-77, 104.
CHENG L , WU Y J , WEI Z Y . Summary and prospect of construction management and technology of super-high arch dams[J]. Water Power, 2020, 46(10): 73-77, 104.
3
周维垣. 岩体工程结构的稳定性[J]. 岩石力学与工程学报, 2010, 29(9): 1729- 1753.
ZHOU W Y . Structure stability of rock mass engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1729- 1753.
4
张林, 费文平, 李桂林, 等. 高拱坝坝肩坝基整体稳定地质力学模型试验研究[J]. 岩石力学与工程学报, 2005, 24(19): 3465- 3469.
ZHANG L , FEI W P , LI G L , et al. Experimental study on global geomechanical model for stability analysis of high arch dam foundation and abutment[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 3465- 3469.
5
CHEN Y , ZHANG L , YANG B Q , et al. Geomechanical model test on dam stability and application to Jinping High arch dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 76, 1- 9.
6
LIU Y R , GUAN F H , YANG Q , et al. Geomechanical model test for stability analysis of high arch dam based on small blocks masonry technique[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 61, 231- 243.
7
WANG S G , LIU Y R , ZHOU H W , et al. Experimental study on failure process of arch dam based on acoustic emission technique[J]. Engineering Failure Analysis, 2019, 97, 128- 144.
8
TAO Z F , LIU Y R , YANG Q , et al. Study on the nonlinear deformation and failure mechanism of a high arch dam and foundation based on geomechanical model test[J]. Engineering Structures, 2020, 207, 110287.
9
杨强, 刘耀儒, 陈英儒, 等. 变形加固理论及高拱坝整体稳定与加固分析[J]. 岩石力学与工程学报, 2008, 27(6): 1121- 1136.
YANG Q , LIU Y R , CHEN Y R , et al. Deformation reinforcement theory and global stability and reinforcement of high arch dams[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1121- 1136.
10
杨强, 刘耀儒, 常强, 等. 结构变形稳定与控制理论及在岩土工程中的应用[J]. 工程力学, 2010, 27(增刊2): 61- 87.
YANG Q , LIU Y R , CHANG Q , et al. Deformation stability and control theory of structures and application in rock and soil engineering[J]. Engineering Mechanics, 2010, 27(S2): 61- 87.
11
YANG Q , LIU Y R , CHEN Y R , et al. Stability and reinforcement analyses of high arch dams by considering deformation effects[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(4): 305- 313.
12
REN Q W, SU M. Analysis of the stability along its base surface of high arch dam[M]//VALLIAPPAN S, KHALILI N. Computational Mechanics—New Frontiers for the New Millennium. Amsterdam: Elsevier, 2001: 467-472.
13
REN Q W , LI Q , JIANG Y Z , et al. Theory and methods of global stability analysis for high arch dam[J]. Science China Technological Sciences, 2011, 54(1): 9- 17.
14
张国新, 刘毅. 坝基稳定分析的有限元直接反力法[J]. 水力发电, 2006, 32(12): 30-32, 38.
ZHANG G X , LIU Y . Finite element direct force method in stability analysis of dam foundation[J]. Water Power, 2006, 32(12): 30-32, 38.
15
常晓林, 蒋春艳, 周伟, 等. 岩质坝基稳定分析的等安全系数法及可靠度研究[J]. 岩石力学与工程学报, 2007, 26(8): 1594- 1602.
CHANG X L , JIANG C Y , ZHOU W , et al. Equal safety factor method and its reliability analysis for rock foundation of dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1594- 1602.
16
常晓林, 刘晓宇, 周伟, 等. 亭子口重力坝复杂坝基稳定分析及安全评价[J]. 中国农村水利水电, 2008(10): 87- 90.
CHANG X L , LIU X Y , ZHOU W , et al. Stability analysis and safety evaluation for complicated foundation of Tingzikou gravity dam[J]. China Rural Water and Hydropower, 2008(10): 87- 90.
17
江涛, 徐卫亚, 陈宏, 等. 受断层切割影响的拱坝坝肩岩体三维稳定性数值分析及加固措施模拟[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5840- 5844.
JIANG T , XU W Y , CHEN H , et al. Numerical analysis of stability for rock mass in arch dam abutment impacted by fault and simulation of fault treatment[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S2): 5840- 5844.
18
WANG H J , LIU Y L , YAN L , et al. Failure analysis of arch dam under fault action based on inter-generational coordination[J]. Engineering Failure Analysis, 2024, 164, 108721.
19
宁宇, 徐卫亚, 郑文棠, 等. 白鹤滩水电站拱坝及坝肩加固效果分析及整体安全度评价[J]. 岩石力学与工程学报, 2008, 27(9): 1890- 1898.
NING Y , XU W Y , ZHENG W T , et al. Reinforcement effect analysis and global safety evaluation of arch dam and abutment of Baihetan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1890- 1898.
20
牟高翔, 陈岗, 刘荣丽. 锦屏一级拱坝左岸基础处理加固措施研究[J]. 水电站设计, 2009, 25(2): 7-12, 22.
MOU G X , CHEN G , LIU R L . Study on Jinping I arch dam left abutment foundation treatment[J]. Design of Hydroelectric Power Station, 2009, 25(2): 7-12, 22.
21
李智林, 池为, 潘燕芳, 等. 万家口子水电站拱坝及坝基加固效果研究[J]. 水电能源科学, 2011, 29(1): 57- 60.
LI Z L , CHI W , PAN Y F , et al. Reinforcement effect analysis of arch dam and dam foundation for Wanjiakouzi hydropower station[J]. Water Resources and Power, 2011, 29(1): 57- 60.
22
肖薇. 大岗山水电站拱坝坝肩岩体加固效果分析[J]. 西北水电, 2015(2): 44- 47.
XIAO W . Analysis on reinforcing effects of rockmass in arch dam abutment, Dagangshan hydropower project[J]. Northwest Hydropower, 2015(2): 44- 47.
23
杨军义, 邢建营, 聂章博, 等. 东庄拱坝基础加固措施效果分析[J]. 人民黄河, 2024, 46(3): 156- 160.
YANG J Y , XING J Y , NIE Z B , et al. Analysis of the effect of strengthening measures for Dongzhuang arch dam foundation[J]. Yellow River, 2024, 46(3): 156- 160.
24
徐奴文, 李韬, 戴峰, 等. 基于离散元模拟和微震监测的白鹤滩水电站左岸岩质边坡稳定性分析[J]. 岩土力学, 2017, 38(8): 2358- 2367.
XU N W , LI T , DAI F , et al. Stability analysis on the left bank slope of Baihetan hydropower station based on discrete element simulation and microseismic monitoring[J]. Rock and Soil Mechanics, 2017, 38(8): 2358- 2367.
25
黄熠辉, 徐建军, 殷亮, 等. 杨房沟水电站拱坝坝基地质缺陷处理设计与研究[J]. 大坝与安全, 2020(5): 44- 50.
HUANG Y H , XU J J , YIN L , et al. Design and research of geological defect treatment of dam foundation of Yangfanggou hydropower station[J]. Dam & Safety, 2020(5): 44- 50.
26
XU Q , ZHANG T R , CHEN J Y , et al. The influence of reinforcement strengthening on seismic response and index correlation for high arch dams by endurance time analysis method[J]. Structures, 2021, 32, 355- 379.
27
LI Y , ZHAO E F , HU L Z , et al. Assessment on safety and performance of super-high arch dam with asymmetric foundation and its reinforcement effect identification[J]. Structures, 2024, 70, 107812.
28
胡筱, 张冲. 特高拱坝整体稳定安全度评价指标研究[J]. 水电站设计, 2022, 38(4): 1-6, 33.
HU X , ZHANG C . Research on overall stability safety evaluation index of extra-high arch dam[J]. Design of Hydroelectric Power Station, 2022, 38(4): 1-6, 33.
29
陈胜宏, 汪卫明, 邹丽春. 岩石边坡开挖及加固分析的弹粘塑性块体元方法[J]. 岩石力学与工程学报, 2002, 21(7): 953- 958.
CHEN S H , WANG W M , ZOU L C . Elasto-viscoplastic block element method for excavation and reinforcement analysis of rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(7): 953- 958.
30
汪卫明, 陈胜宏, 杨红文, 等. 小湾拱坝坝肩抗力岩体加固分析研究[J]. 武汉大学学报(工学版), 2005, 38(2): 20- 24.
WANG W M , CHEN S H , YANG H W , et al. Study on reinforcement of resisting rock masses of Xiaowan arch dam abutment[J]. Engineering Journal of Wuhan University, 2005, 38(2): 20- 24.
31
蒋昱州, 徐卫亚, 王瑞红, 等. 拱坝坝肩岩石流变力学特性试验研究及其长期稳定性分析[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3699- 3709.
JIANG Y Z , XU W Y , WANG R H , et al. Experimental study of rheological mechanical properties of arch dam abutment rock and its long-term stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3699- 3709.
32
王如宾, 徐卫亚, 孟永东, 等. 锦屏一级水电站左岸坝肩高边坡长期稳定性数值分析[J]. 岩石力学与工程学报, 2014, 33((增刊1): 3105- 3113.
WANG R B , XU W Y , MENG Y D , et al. Numerical analysis of long-term stability of left bank abutment high slope at Jinping I Hydropower Station[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3105- 3113.
33
LIU Y R , HE Z , YANG Q , et al. Long-term stability analysis for high arch dam based on time-dependent deformation reinforcement theory[J]. International Journal of Geomechanics, 2017, 17(4): 04016092.
34
ZHANG L , LIU Y R , YANG Q . A creep model with damage based on internal variable theory and its fundamental properties[J]. Mechanics of Materials, 2014, 78, 44- 55.
35
张泷, 刘耀儒, 杨强. 基于内变量热力学的岩石蠕变与应力松弛研究[J]. 岩石力学与工程学报, 2015, 34(4): 755- 762.
ZHANG L , LIU Y R , YANG Q . Creep and relaxation of rock mass based on thermodynamics with internal state varibales[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 755- 762.
36
张泷. 基于内变量热力学的流变模型及岩体结构长期稳定性研究[D]. 北京: 清华大学, 2015.
ZHANG L. Research on rheological model based on thermodynamics with internal state variables and long-term stability of rock mass structures[D]. Beijing: Tsinghua University, 2015. (in Chinese)

基金

国家自然科学基金资助项目(41961134032)
中国华能集团有限公司科技项目(HNKJ22-H109)

版权

版权所有,未经授权,不得转载。
PDF(18309 KB)

Accesses

Citation

Detail

段落导航
相关文章

/