中国高通量堆设计研发及应用现状与展望

李健, 徐伟, 解衡, 石磊

清华大学学报(自然科学版) ›› 2026, Vol. 66 ›› Issue (2) : 388-397.

PDF(1611 KB)
PDF(1611 KB)
清华大学学报(自然科学版) ›› 2026, Vol. 66 ›› Issue (2) : 388-397. DOI: 10.16511/j.cnki.qhdxxb.2025.21.028
核能与新能源

中国高通量堆设计研发及应用现状与展望

作者信息 +

Current status and prospects of design, development and application of high flux reactors in China

Author information +
文章历史 +

摘要

高通量堆是核科技工业领域重要的辐照试验平台和基础研究设施,在工业、农业、医疗等领域发挥着不可替代的作用。中国高通量堆设计研发始于20世纪60年代,高通量工程试验堆(HFETR)、中国先进研究堆(CARR)、中国绵阳研究堆(CMRR)等高通量堆为核能与核技术发展、国民经济建设作出了重要贡献。然而,中国现有高通量堆与国际先进水平仍存在显著差距,主要体现在中子注量率、辐照能力、配套设施、应用领域等方面,制约了战略关键技术的发展。该文归纳了高通量堆的主要技术特征,分析了中国高通量堆的设计研发和应用现状,并从创新驱动、统筹规划、开放共享3个方面对中国高通量堆的发展战略进行了展望。最后指出,通过技术改造升级和资源整合,同步开展新型高通量堆设计研发,可进一步提升中国高通量堆的技术水平和先进性,为核能与核技术发展提供有力支撑。

Abstract

Significance: High flux reactors are research reactors characterized by ultrahigh neutron flux levels (typically ranging from 1014 to 1015 n/(cm2·s) or higher). These devices primarily generate neutron irradiation for fundamental and applied research, including nuclear fuel and material irradiation testing, radioisotope production, and neutron science experimentation. They serve as critical irradiation testing platforms and fundamental research devices in nuclear science and technology, playing an indispensable role in industry, agriculture, and medical applications. This study systematically examined the technical attributes of high flux reactors and comprehensively reviewed China's achievements in high flux reactor design, technological development, and multipurpose utilization. Progress: Diverging from nuclear power reactor designs that focus on optimizing energy conversion efficiency and operational stability, high flux reactors aim to maximize neutron fluxes in irradiation channels, providing a technical foundation for fundamental and applied research while achieving optimal neutron economy. Key technical domains in high flux reactor development include reactor core configuration design, primary process system engineering, irradiation facility integration, and auxiliary system optimization. China's activities of high flux reactor development commenced in the 1960s, leading to landmark achievements, including the development of the High Flux Engineering Test Reactor, China Advanced Research Reactor, and China Mianyang Research Reactor. These facilities have achieved critical technological breakthroughs and diversified applications, contributing considerably to national nuclear energy advancement and socioeconomic development. The modern design philosophy of high flux reactors emphasizes advanced technology integration, functional versatility, and environmental sustainability. Design optimization focuses on enhancing reactor performance metrics while maintaining safety-economy balance and operational flexibility. Nevertheless, China's current high flux reactor designs show discernible limitations compared with international benchmarks, particularly in neutron flux intensity. For instance, the current maximum thermal neutron flux generated is ≤1.5×1015 n/(cm2·s), which limits the production of rare nuclides, such as 252Cf, 249Bk, and 253Es, through long transmutation chains and Pu/Am/Cm target irradiation. Further, insufficient irradiation testing capabilities in representative fast-neutron spectrums hinder the development and qualification of nuclear fuel and materials for Gen-IV advanced nuclear energy systems. Limitations are also observed in terms of irradiation capacity, auxiliary systems (e.g., deficiency in post-irradiation processing and radiochemical separation facilities), and application diversity. These limitations constrain the progress of strategic nuclear science and technology frontiers, including advanced nuclear material development, high-specific-activity radioisotope production, and cutting-edge neutron science research. Conclusions and Prospects: Strategic recommendations for China's high flux reactor development activities are proposed considering three aspects: innovation-driven technological upgrading to improve pivotal technical parameters and reactor performances, coordinated infrastructure planning to achieve the efficient utilization of irradiation resources, and open-resource sharing mechanisms to better drive the development of nuclear technology and related industries. Through technical upgrading and resource integration along with parallel research efforts in next-generation high flux reactor designs, which can substantially enhance technological sophistication and competitiveness, such initiatives are expected to provide robust support for nuclear energy innovation and nuclear technology advancement.

关键词

高通量堆 / 设计研发 / 辐照应用 / 现状与展望

Key words

high flux reactor / design and development / irradiation utilization / current status and prospects

引用本文

导出引用
李健, 徐伟, 解衡, . 中国高通量堆设计研发及应用现状与展望[J]. 清华大学学报(自然科学版). 2026, 66(2): 388-397 https://doi.org/10.16511/j.cnki.qhdxxb.2025.21.028
Jian LI, Wei XU, Heng XIE, et al. Current status and prospects of design, development and application of high flux reactors in China[J]. Journal of Tsinghua University(Science and Technology). 2026, 66(2): 388-397 https://doi.org/10.16511/j.cnki.qhdxxb.2025.21.028
中图分类号: TL411   

参考文献

1
IAEA. Research reactors: Purpose and future [R]. Vienna: International Atomic Energy Agency, 2016.
2
孙寿华, 赵光, 唐锡定, 等. 高通量工程试验堆及其应用[M]. 上海: 上海交通大学出版社, 2025.
SUN S H , ZHAO G , TANG X D , et al. High flux engineering test reactor and its application[M]. Shanghai: Shanghai Jiao Tong University Press, 2025.
3
王昆鹏, 张春明, 攸国顺, 等. 全球研究堆的主要用途及发展趋势研究[J]. 核科学与工程, 2015, 35 (3): 413- 418.
WANG K P , ZHANG C M , YOU G S , et al. Applications and developing trends of global research reactors[J]. Nuclear Science and Engineering, 2015, 35 (3): 413- 418.
4
刘汉刚, 刘永康, 王立校, 等. 多用途研究堆新进展[M]. 上海: 上海交通大学出版社, 2024.
LIU H G , LIU Y K , WANG L X , et al. Recent progresses of multipurpose research reactors[M]. Shanghai: Shanghai Jiao Tong University Press, 2024.
5
TSYKANOV V A , KLINOV A V , STARKOV V A , et al. SM reactor core modification solving materials-science problems[J]. Atomic Energy, 2002, 93 (3): 713- 717.
6
CHANDLER D, BRYAN C D. High flux isotope reactor (HFIR) [M]//GREENSPAN E. Encyclopedia of Nuclear Energy. Amsterdam: Elsevier, 2021: 64-73.
7
O'KELLY D S, The advanced test reactor [M]//GREENSPAN E. Encyclopedia of Nuclear Energy. Amsterdam: Elsevier, 2021: 56-63.
8
IAEA. Research reactor core conversion from the use of highly enriched uranium fuels: Guidebook [R]. Vienna: International Atomic Energy Agency, 1980.
9
DEHART M D , KARRIEM Z , POPE M A , et al. Fuel element design and analysis for potential LEU conversion of the advanced test reactor[J]. Progress in Nuclear Energy, 2018, 104, 117- 135.
10
LANE J A, CHEVERTON R D, CLAIBORNE H C, et al. High flux isotope reactor preliminary design study [R]. Oak Ridge: Oak Ridge National Laboratory (ORNL), 1959.
11
IAEA. Research reactor database (RRDB) [EB/OL]. [2025-01-15]. https://nucleus.iaea.org/rrdb/#/home.
12
袁履正, 柯国土, 金华晋, 等. 中国先进研究堆(CARR)的设计特点和创新技术[J]. 核动力工程, 2006, 27 (5): 1- 5.
YUAN L Z , KE G T , JIN H J , et al. Features and innovatives of China advanced research reactor (CARR) design[J]. Nuclear Power Engineering, 2006, 27 (5): 1- 5.
13
孙光爱, 刘栋, 龚建, 等. 中国绵阳研究堆CMRR中子散射平台及应用[J]. 中国科学: 物理学力学天文学, 2021, 51 (9): 092009.
SUN G A , LIU D , GONG J , et al. The neutron scattering platform of China Mianyang research reactor (CMRR) and recent applications[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2021, 51 (9): 092009.
14
ROGLANS-RIBAS J , PASAMEHMETOGLU K , O'CONNOR T J . The versatile test reactor project: Mission, requirements, and description[J]. Nuclear Science and Engineering, 2022, 196 (S1): 1- 10.
15
IRC. MBIR reactor [EB/OL]. [2025-01-10]. https://en.mbir-rosatom.ru/reactor/.
16
王家英, 董铎. 现代研究堆技术与安全发展的特点[J]. 清华大学学报(自然科学版), 1998, 38 (4): 117- 118.
WANG J Y , DONG D . Technical and safe development features of modern research reactor[J]. Journal of Tsinghua University (Science & Technology), 1998, 38 (4): 117- 118.
17
钟洁, 陈伟, 杨军, 等. 研究性核反应堆的现状、应用和发展[J]. 物理, 2001, 30 (11): 693- 698.
ZHONG J , CHEN W , YANG J , et al. The status and future applications of nuclear research reactors[J]. Physics, 2001, 30 (11): 693- 698.
18
BARRADAS N P. Applications of research reactors [M]//GREENSPAN E. Encyclopedia of Nuclear Energy. Amsterdam: Elsevier, 2021: 8-25.
19
杨文华, 赵国正, 张亮, 等. 高通量工程试验堆辐照试验能力和辐照试验技术[J]. 核科学与工程, 2018, 38 (6): 986- 994.
YANG W H , ZHAO G Z , ZHANG L , et al. Irradiation testing capabilities and irradiation testing technology of the HFETR[J]. Nuclear Science and Engineering, 2018, 38 (6): 986- 994.
20
王丛林, 柴晓明, 杨博, 等. 先进核能技术发展及展望[J]. 核动力工程, 2023, 44 (5): 1- 5.
WANG C L , CHAI X M , YANG B , et al. Development and prospect of advanced nuclear energy technology[J]. Nuclear Power Engineering, 2023, 44 (5): 1- 5.
21
FVTTERER M A , D'AGATA E , LAURIE M , et al. Next generation fuel irradiation capability in the high flux reactor Petten[J]. Journal of Nuclear Materials, 2009, 392 (2): 184- 191.
22
廖玮, 夏榜样, 余红星, 等. 超高通量快中子研究堆需求分析[J]. 核动力工程, 2022, 43 (6): 222- 226.
LIAO W , XIA B Y , YU H X , et al. Requirement analysis on ultra-high flux fast neutron research reactors[J]. Nuclear Power Engineering, 2022, 43 (6): 222- 226.
23
KNOL S , DE GROOT S , SALAMA R V , et al. HTR-PM fuel pebble irradiation qualification in the high flux reactor in Petten[J]. Nuclear Engineering and Design, 2018, 329, 82- 88.
24
IAEA. Manual for reactor produced radioisotopes [R]. Vienna: International Atomic Energy Agency, 2003.
25
ROBINSON S M , BENKER D E , COLLINS E D , et al. Production of Cf-252 and other transplutonium isotopes at Oak Ridge national laboratory[J]. Radiochimica Acta, 2020, 108 (9): 737- 746.
26
张锦荣, 罗志福. 中国放射性同位素技术与应用进展[J]. 中国工程科学, 2008, 10 (1): 61- 69.
ZHANG J R , LUO Z F . Radioisotope technique and its application progress in China[J]. Strategic Study of CAE, 2008, 10 (1): 61- 69.
27
彭述明, 杨宇川, 谢翔, 等. 我国堆照医用同位素生产及应用现状与展望[J]. 科学通报, 2020, 65 (32): 3526- 3537.
PENG S M , YANG Y C , XIE X , et al. Current status and prospects of reactor produced medical radioisotopes in China[J]. Chinese Science Bulletin, 2020, 65 (32): 3526- 3537.
28
李天富, 武梅梅, 焦学胜, 等. 中国先进研究堆中子科学平台发展现状及展望[J]. 原子核物理评论, 2020, 37 (3): 364- 376.
LI T F , WU M M , JIAO X S , et al. Current status and future prospect of neutron facilities at China advanced research reactor[J]. Nuclear Physics Review, 2020, 37 (3): 364- 376.
29
王玉林, 朱吉印, 甄建霄. 中国先进研究堆应用及未来发展[J]. 原子能科学技术, 2020, 54 (S1): 213- 217.
WANG Y L , ZHU J Y , ZHEN J X . Utilization and future development of China advanced research reactor[J]. Atomic Energy Science and Technology, 2020, 54 (S1): 213- 217.
30
KOMEDA M , OBARA T . Core designs based on research reactors for neutron transmutation doping of silicon[J]. Annals of Nuclear Energy, 2014, 65, 338- 344.
31
BETZLER B R , CHANDLER D , COOK D H , et al. Design optimization methods for high-performance research reactor core design[J]. Nuclear Engineering and Design, 2019, 352, 110167.

基金

“十四五”国家重大科技基础设施宽能谱超高通量试验堆项目

版权

版权所有,未经授权,不得转载。
PDF(1611 KB)

Accesses

Citation

Detail

段落导航
相关文章

/