PDF(25938 KB)
基于多源遥感和几何特征的间歇性河流提取方法——以无定河流域为例
邢轩玮, 薛源, 张永显, 覃超, 李丹, 徐梦珍
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (8) : 1569-1582.
PDF(25938 KB)
PDF(25938 KB)
基于多源遥感和几何特征的间歇性河流提取方法——以无定河流域为例
Intermittent river morphology extraction method based on multisource remote sensing and river characteristics: A case study in Wuding River Basin
河流边界条件是河流地貌演化、流域水沙模拟、河流物质通量计算、河流生境评估等研究的基础。河流断面形态能够反映河流边界,然而在缺资料的间歇性河流地区,较难通过传统方法获取河流连续的断面形态,因此通常将河流断面概化为简单形状。概化断面的常用形状为一般梯形,但在提取缺资料地区或大尺度流域的连续断面时,难以获取床面宽度,致使概化结果严重失真。该研究以多源卫星影像为数据源,优化并行随机森林-人工神经网络(PRF-ANN)算法,并基于土壤水分降尺度方法构建了考虑枯水期河床特征的河流表面信息提取算法——GPU并行随机森林-卷积神经网络(GRF-CNN)算法。以位于黄土高原的典型间歇性河流无定河流域为研究区域,验证算法效果。结果表明:建立的流域土壤水分降尺度反演方法,反演结果与原位数据相比,R2为0.81、RMSE小于0.059 m3/m3,优于其他产品;GRF-CNN提取平滩期河流表面信息及枯水期河流床面信息的精度分别为95.7%和90.3%,较目前深度学习算法提升超10%;基于水文站实测数据,该研究提取的概化断面面积较PRF-ANN算法精度提升27.3%。该研究显示了考虑河流特征的GRF-CNN算法提取细小河流的突出能力,展现了可解释机器学习在提取河流信息方面的优势。该研究可为基于多源卫星遥感观测提取间歇性河流断面形态提供关键参数,为流域河流边界重构、缺资料地区数字孪生流域建设提供技术及数据支撑。
Objective: Intermittent rivers, distinguished by sporadic flow cessation, account for more than half of the global river network and are particularly prevalent in semiarid and arid zones, such as the northwest region of China. These watercourses are pivotal in hydrological modeling, sediment transport simulations, and evaluation of riverine ecosystems. Nevertheless, precise extraction of riverbed and cross-sectional data for intermittent rivers during low-flow periods poses a formidable challenge, largely due to the paucity of data and the constraints inherent in conventional measurement techniques. The current methodologies, including digital elevation models (DEM) and empirical equations, fail to deliver continuous and accurate data on river morphology. This study tackles these challenges by introducing a graphics processing unit (GPU)-accelerated random forest (GRF)-convolutional neural network (CNN) algorithm, referred to as the GRF-CNN algorithm, that harnesses multisource remote sensing information and integrates soil moisture downscaling to delineate riverbed characteristics under bankfull and dry states. Methods: This research centers on the Wuding River Basin, a typical intermittent river system located on the Loess Plateau of China. This study develops and validates the GRF-CNN algorithm via integration and optimization of advanced techniques for river morphology extraction. Multisource remote sensing datasets, such as thermal infrared data from the Landsat-8 and ZY1-02E satellites and soil moisture data from the soil moisture active passive (SMAP) satellite and the Sentinel-1 synthetic aperture radar, are used for comprehensive surface and subsurface analyses. Building on the parallel random forest-artificial neural network (PRF-CNN) framework, the GRF-CNN algorithm incorporates CNN modules to enhance the downscaling of thermal infrared data and improve soil moisture inversion. A hybrid statistical-physical model, combining the water cloud model, Dubois model, and advanced integral equation model, along with the deep supervised neural network, is employed to increase the spatial resolution of soil moisture data to 10 m. Specific soil moisture thresholds for different river levels (4th-7th order) are established to accurately extract riverbeds and cross-sectional boundaries during dry seasons. The algorithm's performance is confirmed via hydrological station measurements and high-resolution satellite images. Results: The results demonstrate that the downscaled soil moisture data achieve an R2 of 0.81 and a root mean square error of < 0.059 m3/m3, outperforming conventional soil moisture products. The GRF-CNN algorithm achieves 95.7% accuracy for bankfull river surfaces and 90.3% for dry season riverbeds, with a 27.3% improvement in accuracy of generalized cross-sectional bottom width extraction versus the PRF-ANN algorithm. Furthermore, GRF-CNN surpasses widely recognized machine learning models, including DiCNN-4, Bi-LSTM, and Transformer-based methods, by a margin of at least 10% in terms of Kappa coefficient, overall accuracy, classification accuracy, F1 score, and recall, particularly in the extraction of intermittent river features. Conclusions: This study underscores the potential of integrating multisource remote sensing data with sophisticated machine learning algorithms to tackle the challenges associated with the extraction of river morphology in intermittent river systems. The GRF-CNN algorithm offers a scalable and precise solution for reconstructing river boundaries and estimating cross-sectional parameters in data-scarce regions. Moreover, it illustrates the benefits of incorporating soil moisture dynamics into riverbed morphology extraction processes. We believe the results have far-reaching implications for hydrological modeling, sediment transport studies, and developing digital twin watersheds for resource management and ecological restoration in arid and semiarid areas. By addressing the gap in river morphology data extraction, this study provides substantial technical and data support for increasing the accuracy of hydrological simulations and advancing sustainable watershed management strategies.
河流表面信息提取 / 土壤水分空间降尺度 / 多源遥感 / 可解释机器学习
river surface information extraction / spatial downscaling of soil moisture / multisource remote sensing / explainable machine learning
| 1 |
|
| 2 |
|
| 3 |
|
| 4 |
|
| 5 |
|
| 6 |
李超然, 苗令占, 侯俊. 间歇性河流中生物膜对干湿胁迫的动态响应[J]. 中国环境科学, 2021, 41 (11): 5245- 5253.
|
| 7 |
|
| 8 |
|
| 9 |
王平. 西北干旱区间歇性河流与含水层水量交换研究进展与展望[J]. 地理科学进展, 2018, 37 (2): 183- 197.
|
| 10 |
|
| 11 |
李德仁, 王密, 沈欣, 等. 从对地观测卫星到对地观测脑[J]. 武汉大学学报(信息科学版), 2017, 42 (2): 143- 149.
|
| 12 |
|
| 13 |
|
| 14 |
|
| 15 |
|
| 16 |
薛源, 覃超, 吴保生, 等. 基于多源遥感数据的黄河数字流域模型改进[J]. 水利学报, 2023, 54 (8): 930- 941.
|
| 17 |
|
| 18 |
|
| 19 |
|
| 20 |
陈新, 徐国策, 李清顺, 等. 大理河消落带土壤微生物群落功能多样性[J]. 水土保持研究, 2023, 30 (5): 193- 200.
|
| 21 |
|
| 22 |
赵伟, 文凤平, 蔡俊飞. 被动微波土壤水分遥感产品空间降尺度研究: 方法、进展及挑战[J]. 遥感学报, 2022, 26 (9): 1699- 1722.
|
| 23 |
|
| 24 |
|
| 25 |
|
| 26 |
|
| 27 |
PAN H. Cloud removal for remote sensing imagery via spatial attention generative adversarial network[Z]. arXiv: 2009.13015, 2020.
|
| 28 |
文凤平, 赵伟, 胡路, 等. 耦合MODIS数据的SMAP被动微波土壤水分空间降尺度研究: 以闪电河流域为例[J]. 遥感学报, 2021, 25 (4): 962- 973.
|
| 29 |
|
| 30 |
TORRES R, GEUDTNER D, LOKAS S, et al. Sentinel-1 satellite evolution[C]// 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE, 2018: 1555-1558.
|
| 31 |
|
| 32 |
|
| 33 |
|
| 34 |
|
| 35 |
|
| 36 |
|
| 37 |
|
| 38 |
|
| 39 |
|
| 40 |
|
| 41 |
|
| 42 |
许炯心. 无定河流域侵蚀产沙过程对水土保持措施的响应[J]. 地理学报, 2004, 59 (6): 972- 981.
|
| 43 |
李刚, 潘保柱, 丁一桐, 等. 无定河流域浮游动物群落结构特征及水质生物评价[J]. 中国环境监测, 2024, 40 (3): 181- 196.
|
| 44 |
张小瑜, 周自翔, 唐志雄, 等. 无定河流域生境质量时空变化及预测[J]. 中国沙漠, 2024, 44 (3): 75- 84.
|
| 45 |
GAO S X, HE B B, GUAN Y W, et al. Study on theoretical reserves of water energy and its distribution based on HYDRO30 digital drainage network[C]// 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE, 2018: 749-752.
|
| 46 |
农晓星, 聂卫波, 马孝义. 无定河流域风沙滩区河道基流变化规律与驱动因素分析[J]. 水土保持学报, 2023, 37 (1): 103- 113.
|
| 47 |
覃超, 吴保生, 汪舸, 等. 青藏高原山区河流广义河相关系与多频率沿程河相关系[J]. 水利学报, 2022, 53 (2): 176- 187.
|
| 48 |
|
| 49 |
夏军强, 吴保生, 李文文. 黄河下游平滩流量不同确定方法的比较[J]. 泥沙研究, 2009 (3): 20- 29.
|
| 50 |
刘然, 徐国策, 李占斌, 等. 陕西大理河流域枯水期土地利用结构对河流水质的影响[J]. 地球科学与环境学报, 2022, 44 (2): 327- 337.
|
| 51 |
|
| 52 |
|
| 53 |
|
| 54 |
|
| 55 |
|
| 56 |
|
| 57 |
|
| 58 |
|
| 59 |
|
| 60 |
SONG X Z, WU Y, ZHANG C H. TSTNet: A sequence to sequence transformer network for spatial-temporal traffic prediction[C]// 30th International Conference on Artificial Neural Networks. Bratislava, Slovakia: Springer, 2021: 343-354.
|
| 61 |
冯思维, 杨清华, 贾伟洁, 等. 基于光学遥感的内陆地表水体提取综述[J]. 自然资源遥感, 2024, 36 (3): 41- 56.
|
| 62 |
|
/
| 〈 |
|
〉 |