金沙江下游水电开发的生态效应:冬季浮游动物多样性演变与群落构建的驱动机制

周心怡, 周雄冬, 张家豪, 翁楚彬, 徐梦珍

清华大学学报(自然科学版) ›› 2026, Vol. 66 ›› Issue (2) : 365-378.

PDF(15358 KB)
PDF(15358 KB)
清华大学学报(自然科学版) ›› 2026, Vol. 66 ›› Issue (2) : 365-378. DOI: 10.16511/j.cnki.qhdxxb.2025.22.032
环境科学与工程

金沙江下游水电开发的生态效应:冬季浮游动物多样性演变与群落构建的驱动机制

作者信息 +

Ecological impacts of hydropower development in the lower Jinsha River: Evolution o zooplankton diversity and community assembly mechanisms during winter

Author information +
文章历史 +

摘要

环境DNA(eDNA)技术是一种水生态系统生物检测手段,通过捕获水体中的游离DNA片段,在分子水平上高效解析水生生物群落的结构特征。该研究应用eDNA宏条形码技术,结合β多样性分析、线性判别分析效应大小(LEfSe)、共现网络及随机森林模型等方法,系统评估了金沙江下游向家坝水电站对冬季浮游动物多样性时空分布及群落演替的影响。结果表明,向家坝水电站显著改变了浮游动物α多样性特征:坝下干流的物种丰富度(Chao1)和系统发育多样性(PD)显著高于上游区域,且沿大坝方向呈递减趋势;支流的功能多样性显著高于干流。优势类群在不同水体类型中的分布差异显著:坝下干流中原生动物相对丰度最高,而坝上支流中以桡足类占优。坝下干流浮游动物群落的共现网络复杂度及稳定性更高。在河段尺度上,冬季浮游动物的β多样性由周转组分驱动,坝上支流因空间隔离和栖息地异质性较高,β多样性显著高于干流。水动力和水质条件是影响向家坝河段冬季浮游动物α多样性的关键环境因子,而营养和水质条件的变化则是驱动β多样性及其组分变化的关键环境因子,在向家坝河段的冬季浮游动物群落构建中发挥关键作用。

Abstract

Objective: Environmental DNA (eDNA) technology is an emerging tool for the biological monitoring of aquatic ecosystems. It enables an efficient molecular analysis of the structural characteristics of aquatic communities by capturing DNA fragments freely present in water. This study focuses on the following objectives: (1) analyzing the spatial distribution patterns of winter zooplankton diversity and community composition in the Xiangjiaba section of the lower Jinsha River; (2) exploring the assembly processes and driving factors of winter zooplankton communities; (3) assessing the potential impacts of hydropower development on zooplankton diversity in this section during winter; and (4) identifying key environmental factors affecting zooplankton community structure and elucidating the regulatory mechanisms involved. Methods: This study applied eDNA metabarcoding to investigate winter zooplankton communities in the Xiangjiaba section of the lower Jinsha River. Species, phylogenetic, and functional diversity indices were calculated to evaluate the α-diversity. β-diversity was partitioned into species turnover and nestedness components. Community composition variations were assessed by applying Bray-Curtis distance, principal coordinates analysis (PCoA), and permutational multivariate analysis of variance (PerMANOVA). Key taxa were identified using linear discriminant analysis effect size (LEfSe). Co-occurrence networks were constructed utilizing sparse correlations for compositional data (SparCC) to evaluate community structure and stability. Random forest models were employed to identify crucial environmental drivers shaping zooplankton diversity patterns. Results: The Xiangjiaba Hydropower Station significantly impacted the α-diversity of winter zooplankton in the lower Jinsha River. Specifically, the downstream area of the mainstream river exhibited markedly higher Chao1 richness (Chao1) and phylogenetic diversity than the upstream regions. Additionally, both indices gradually declined toward the dam, suggesting a "homogenization effect" caused by reservoir regulation. Regarding functional traits, functional richness (FRic) and functional divergence (FDiv) were markedly greater in the tributaries than in the mainstream, reflecting a greater ecological niche differentiation in less-regulated habitats. The composition of dominant zooplankton groups varied across different water body types. Protozoans dominated the downstream region of the mainstream, whereas copepods were predominant in the upstream tributaries. The upstream region of the mainstream exhibited moderate protozoan abundance levels but lacked a single dominant group. Co-occurrence network analysis revealed that the downstream area of the mainstream had a more complex and robust network structure, with higher connectivity and lower vulnerability, indicating enhanced community stability. At the river section scale, the β-diversity of the winter zooplankton was primarily driven by species turnover, with species replacement being the primary community assembly process. Tributaries exhibited significantly enhanced β-diversity compared to the mainstream, largely due to spatial isolation and heterogeneous environmental conditions. The upstream area of the mainstream, functioning as a transition zone between the tributaries and downstream, demonstrated greater environmental homogenization and reduced community dissimilarity. Conclusions: Hydrological dynamics (e.g., water depth, flow velocity, and water level fluctuations) and water quality (e.g., temperature and turbidity) are the main environmental factors influencing α-diversity patterns of winter zooplankton. Variations in nutrient levels (e.g., chlorophyll a) and water quality (e.g., conductivity and water temperature) are the key drivers of β-diversity and its components, particularly species turnover. These findings suggest that developing hydropower stations and associated environmental changes notably influence zooplankton community structure and assembly processes. Tributary inflow and dam-induced habitat modifications are critical in shaping spatial biodiversity patterns in regulated river systems.

关键词

金沙江 / 梯级水电开发 / 浮游动物 / 环境DNA / 群落构建

Key words

Jinsha River / cascade hydropower development / zooplankton / environmental DNA / community assembly

引用本文

导出引用
周心怡, 周雄冬, 张家豪, . 金沙江下游水电开发的生态效应:冬季浮游动物多样性演变与群落构建的驱动机制[J]. 清华大学学报(自然科学版). 2026, 66(2): 365-378 https://doi.org/10.16511/j.cnki.qhdxxb.2025.22.032
Xinyi ZHOU, Xiongdong ZHOU, Jiahao ZHANG, et al. Ecological impacts of hydropower development in the lower Jinsha River: Evolution o zooplankton diversity and community assembly mechanisms during winter[J]. Journal of Tsinghua University(Science and Technology). 2026, 66(2): 365-378 https://doi.org/10.16511/j.cnki.qhdxxb.2025.22.032
中图分类号: Q958.8   

参考文献

1
LI S F , HUANG X B , LANG X D , et al. Cumulative effects of multiple biodiversity attributes and abiotic factors on ecosystem multifunctionality in the Jinsha River valley of Southwestern China[J]. Forest Ecology and Management, 2020, 472, 118281.
2
ISMAIL A H , LIM C C , OMAR W M W . Evaluation of spatial and temporal variations in zooplankton community structure with reference to water quality in Teluk Bahang Reservoir, Malaysia[J]. Tropical Ecology, 2019, 60 (2): 186- 198.
3
GANNON J E , STEMBERGER R S . Zooplankton (especially crustaceans and rotifers) as indicators of water quality[J]. Transactions of the American Microscopical Society, 1978, 97 (1): 16- 35.
4
JEPPESEN E , NÕGES P , DAVIDSON T A , et al. Zooplankton as indicators in lakes: A scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD)[J]. Hydrobiologia, 2011, 676 (1): 279- 297.
5
茹辉军, 张燕, 吴湘香, 等. 金沙江下游沿岸区大型底栖动物群落结构及影响因素[J]. 中国水产科学, 2022, 29 (12): 1679- 1692.
RU H J , ZHANG Y , WU X X , et al. Macrozoobenthos community structure and its relationship with environmental factors in the riparian zone of the lower Jinsha River[J]. Journal of Fishery Sciences of China, 2022, 29 (12): 1679- 1692.
6
熊飞, 郭祺, 张伟, 等. 金沙江下游向家坝库区鱼类群落结构空间格局[J]. 水生态学杂志, 2024, 45 (4): 82- 91.
XIONG F , GUO Q , ZHANG W , et al. Spatial pattern of fish community structure in Xiangjiaba Reservoir on the lower Jinsha River[J]. Journal of Hydroecology, 2024, 45 (4): 82- 91.
7
龚进玲, 朱挺兵, 杨德国, 等. 金沙江干流浮游甲壳动物群落结构特征及其与环境因子的关系[J]. 淡水渔业, 2024, 54 (3): 21- 28.
GONG J L , ZHU T B , YANG D G , et al. Community structure of crustacean zooplankton in the mainstream of Jinsha River and its relationship with environmental factors[J]. Freshwater Fisheries, 2024, 54 (3): 21- 28.
8
QIN Y , WANG F , ZHANG S Y , et al. Impacts of cascade hydropower development on aquatic environment in middle and lower reaches of Jinsha River, China: A review[J]. Environmental Science and Pollution Research, 2024, 31 (42): 54363- 54380.
9
周子俊, 刘玉倩. 南水北调西线工程水源区浮游生物群落结构特征研究[C]//2022年第10届中国水生态大会. 南阳, 2022.
ZHOU Z J, LIU Y Q. Study on the characteristics of plankton community structure in the water source area of the western route project of the South-to-North Water Diversion [C]//The 2022 (10th) China Water Ecology Conference. Nanyang, China, 2022. (in Chinese)
10
龚廷登, 杨伟阶, 何滔, 等. 金沙江水富段水生生物的群落结构及水质监测[J]. 淡水渔业, 2014, 44 (4): 25- 34.
GONG T D , YANG W J , HE T , et al. Investigation on water quality and community structure of aquatic organisms at Shuifu section in Chin-sha River[J]. Freshwater Fisheries, 2014, 44 (4): 25- 34.
11
王宁. 乌东德水电站建设对金沙江下游浮游生物群落特征影响分析[D]. 哈尔滨: 东北林业大学, 2021.
WANG N. Analysis of the impact of the construction of Wudongde Hydropower Station on the characteristics of plankton community in the lower reaches of the Jinsha River [D]. Harbin: Northeast Forestry University, 2021. (in Chinese)
12
管义伟, 李银波, 陈露欣, 等. 金沙江下游梯级水库夏冬季垂向水体理化特征研究[J]. 人民长江, 2024, 55 (12): 54- 63.
GUAN Y W , LI Y B , CHEN L X , et al. Study on vertical physicochemical characteristics of water of cascade reservoirs in lower reaches of Jinsha River in summer and winter[J]. Yangtze River, 2024, 55 (12): 54- 63.
13
李武阶, 王继竹, 郭英莲, 等. 金沙江中下游流域面雨量特征分析[J]. 长江流域资源与环境, 2014, 23 (6): 846- 853.
LI W J, WANG J Z, GUO Y L, et al. Analysis on characteristics of areal precipitation in the middle and lower reaches of the Jinsha River Basin [J]. 2014, 23(6): 846-853. (in Chinese)
14
REES H C , MADDISON B C , MIDDLEDITCH D J , et al. The detection of aquatic animal species using environmental DNA: A review of eDNA as a survey tool in ecology[J]. Journal of Applied Ecology, 2014, 51 (5): 1450- 1459.
15
LIDDICOAT C , KRAUSS S L , BISSETT A , et al. Next generation restoration metrics: Using soil eDNA bacterial community data to measure trajectories towards rehabilitation targets[J]. Journal of Environmental Management, 2022, 310, 114748.
16
SONG J X , LIANG D . Community structure of zooplankton and its response to aquatic environmental changes based on eDNA metabarcoding[J]. Journal of Hydrology, 2023, 622, 129692.
17
YANG J H , ZHANG X W , XIE Y W , et al. Ecogenomics of zooplankton community reveals ecological threshold of ammonia nitrogen[J]. Environmental Science & Technology, 2017, 51 (5): 3057- 3064.
18
GELLER J , MEYER C , PARKER M , et al. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit Ⅰ for marine invertebrates and application in all-taxa biotic surveys[J]. Molecular Ecology Resources, 2013, 13 (5): 851- 861.
19
YUAN M M , GUO X , WU L W , et al. Climate warming enhances microbial network complexity and stability[J]. Nature Climate Change, 2021, 11 (4): 343- 348.
20
DENG Y , JIANG Y H , YANG Y F , et al. Molecular ecological network analyses[J]. BMC Bioinformatics, 2012, 13 (1): 1- 20.
21
吴湘香, 王银平, 张燕, 等. 长江干流浮游动物群落结构及时空分布格局[J]. 水产学报, 2023, 47 (2): 029313.
WU X X , WANG Y P , ZHANG Y , et al. Zooplankton community structure and spatio-temporal dynamics in the main stream of the Yangtze River[J]. Journal of Fisheries of China, 2023, 47 (2): 029313.
22
张金勇, 高养春, SAHA S R M, 等. 基于高通量测序和形态学鉴定的马来西亚马塘红树林区浮游动物多样性分析[J]. 大连海洋大学学报, 2021, 36 (6): 910- 919.
ZHANG J Y , GAO Y C , SAH A S R M , et al. Diversity analysis of zooplankton in matang mangrove reserve in Malaysia by high-throughput sequencing and morphological identification methods[J]. Journal of Dalian Fisheries University, 2021, 36 (6): 910- 919.
23
沈彦君, 张玉凤, 王梦, 等. 长江上游珍稀特有鱼类国家级自然保护区重庆段水域浮游生物多样性及群落结构特征[J]. 重庆师范大学学报(自然科学版), 2024, 41 (4): 94- 109.
SHEN Y J , ZHANG Y F , WANG M , et al. Study on plankton diversity and community structure characteristics of the rare and endemic fish national nature reserve in the Upper Yangtze River in Chongqing section[J]. Journal of Chongqing Normal University (Natural Science), 2024, 41 (4): 94- 109.
24
LINDEQUE P K , PARRY H E , HARMER R A , et al. Next generation sequencing reveals the hidden diversity of zooplankton assemblages[J]. PLoS One, 2013, 8 (11): e81327.
25
RATHNASURIYA M I G , MATEOS-RIVERA A , SKERN-MAURITZEN R , et al. Composition and diversity of larval fish in the Indian Ocean using morphological and molecular methods[J]. Marine Biodiversity, 2021, 51 (2): 39.
26
于文波, 王庆, 魏南, 等. 基于DNA条形码技术的浮游动物休眠卵种类鉴定: 以洞庭湖流域常德柳叶湖为例[J]. 湖泊科学, 2020, 32 (1): 154- 163.
YU W B , WANG Q , WEI N , et al. Species identification of zooplankton resting eggs based on DNA barcode technology: A case study of Lake Liuye (Changde), Lake Dongting Basin[J]. Journal of Lake Sciences, 2020, 32 (1): 154- 163.
27
兰波, 朱迟, 黄玉静, 等. 三峡水库蓄水期长江万州段干支流浮游动物群落特征研究[J]. 四川动物, 2020, 39 (5): 517- 530.
LAN B , ZHU C , HUANG Y J , et al. Research on zooplankton community in the mainstream of Yangtze River and its tributaries of wanzhou section during impounding[J]. Sichuan Journal of Zoology, 2020, 39 (5): 517- 530.
28
陈绵润, 欧阳昊, 赵帅营, 等. 横岗水库后生浮游动物群落特征[J]. 生态科学, 2007, 26 (2): 137- 142.
CHEN M R , OUYANG H , ZHAO S Y , et al. Metazoan zooplankton communities in a tropical eutrophic reservoir: Henggang Reservoir, Guangdong[J]. Ecological Science, 2007, 26 (2): 137- 142.
29
董云仙, 王忠泽. 泸沽湖表层水体浮游动物种群结构及季节变化[J]. 水生态学杂志, 2014, 35 (6): 38- 45.
DONG Y X , WANG Z Z . Zooplankton community structure and its seasonal variation in the surface water of Lugu Lake[J]. Journal of Hydroecology, 2014, 35 (6): 38- 45.
30
王爱民, 席贻龙, 牛翔翔, 等. 汀棠湖冬季出现的萼花臂尾轮虫对水温的适应[J]. 生态学报, 2014, 34 (16): 4588- 4595.
WANG A M , XI Y L , NIU X X , et al. Adaptation of Brachionus calyciflorus (Rotifera) occurred in winter in Lake Tingtang to water temperature: A life table demography study[J]. Acta Ecologica Sinica, 2014, 34 (16): 4588- 4595.
31
DEMOTT W R. The role of competition in zooplankton succession [M]//SOMMER U. Plankton ecology. Berlin: Springer, 1989: 195-252.
32
朱文静, 胡文革, 张映东, 等. 大泉沟水库不同水文时期浮游动物群落特征及其对水环境因子的响应[J]. 生态毒理学报, 2020, 15 (6): 243- 251.
ZHU W J , HU W G , ZHANG Y D , et al. Characteristics of zooplankton communities and their responses to water environmental factors during different hydrological periods of the Daquangou Reservoir[J]. Asian Journal of Ecotoxicology, 2020, 15 (6): 243- 251.
33
洪陈聪, 胡权, 陈皓若, 等. 青草沙水库后生浮游动物功能群特征及影响因子[J]. 生物学杂志, 2023, 40 (5): 47- 53.
HONG C C , HU Q , CHEN H R , et al. Characteristics and influencing factors of metazooplankton functional groups in Qingcaosha Reservoir[J]. Journal of Biology, 2023, 40 (5): 47- 53.
34
王耀耀, 吕林鹏, 纪道斌, 等. 向家坝水库营养盐时空分布特征及滞留效应[J]. 环境科学, 2019, 40 (8): 3530- 3538.
WANG Y Y , LV L P , JI D B , et al. Spatial and temporal distribution characteristics and the retention effects of nutrients in Xiangjiaba Reservoir[J]. Environmental Science, 2019, 40 (8): 3530- 3538.
35
BILOTTA G S , BRAZIER R E . Understanding the influence of suspended solids on water quality and aquatic biota[J]. Water Research, 2008, 42 (12): 2849- 2861.
36
GOAŹDZIEJEWSKA A M , KRUK M . Zooplankton network conditioned by turbidity gradient in small anthropogenic reservoirs[J]. Scientific Reports, 2022, 12 (1): 3938.
37
邵海燕, 王卿, 高春霞, 等. 长江口浮游植物群落特征及影响因素分析[J]. 大连海洋大学学报, 2024, 39 (1): 124- 133.
SHAO H Y , WANG Q , GAO C X , et al. Analysis of phytoplankton community characteristics and influencing factors in the Yangtze River Estuary[J]. Journal of Dalian Fisheries University, 2024, 39 (1): 124- 133.
38
LOUETTE G , DE MEESTER L . High dispersal capacity of cladoceran zooplankton in newly founded communities[J]. Ecology, 2005, 86 (2): 353- 359.
39
BRAGHIN L D S M , ALMEIDA B D A , AMARAL D C , et al. Effects of dams decrease zooplankton functional β-diversity in river-associated lakes[J]. Freshwater Biology, 2018, 63 (7): 721- 730.
40
GOAŹDZIEJEWSKA A M , CYMES I , GLIŃSKA-LEWCZUK K . Zooplankton functional diversity as a bioindicator of freshwater ecosystem health across land use gradient[J]. Scientific Reports, 2024, 14 (1): 18456.
41
ELMQVIST T , FOLKE C , NYSTRÖM M , et al. Response diversity, ecosystem change, and resilience[J]. Frontiers in Ecology and the Environment, 2003, 1 (9): 488- 494.
42
CHEN W D , REN K X , ISABWE A , et al. Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons[J]. Microbiome, 2019, 7 (1): 138.

基金

国家自然科学基金联合基金项目(U2243222)
国家自然科学基金联合基金项目(U2240207)
国家自然科学基金青年科学基金项目(52309094)

版权

版权所有,未经授权,不得转载。
PDF(15358 KB)

Accesses

Citation

Detail

段落导航
相关文章

/