动力锂离子电池主动热管理研究进展

贺元骅, 苏星辰, 赵梁

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (9) : 1805-1820.

PDF(18608 KB)
PDF(18608 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (9) : 1805-1820. DOI: 10.16511/j.cnki.qhdxxb.2025.22.046
锂离子电池

动力锂离子电池主动热管理研究进展

作者信息 +

Research progress on active thermal management of power battery

Author information +
文章历史 +

摘要

随着充放电倍率的提升和应用场景的严苛, 动力锂离子电池主动热管理系统亟待突破高效长时散热方面的技术瓶颈。该文综述了近年来动力锂离子电池主动热管理策略的研究进展, 总结了强制风冷、自然风冷、浸没式液冷和微通道液冷4种单相热管理方法的研究现状。风冷在低充放电倍率、轻量化工程背景下仍发挥重要作用; 随放电倍率需求提升, 微通道液冷和浸没式液冷效果显著提升, 更利于控制电池温度与温均性。回顾了浸没式沸腾冷却、喷雾综合冷却等基于气/液两相流的先进冷却技术, 这些技术在电池高倍率充放电需求增加的背景下, 提供了高效、灵活且适应性强的热管理解决方案。未来的研究与发展将聚焦于提升热传递效率、系统集成度和智能控制能力, 并致力于克服可靠性、成本、极端工况适应性和能耗优化等挑战。在文献综述基础上, 从多种应用场景展望了动力锂离子电池主动热管理技术的发展趋势, 认为新一代技术的开发应充分考虑充放电倍率、应用场景严苛性等工程实际需求。

Abstract

Significance: Amid the rapid development of new productivity tools, the active thermal management system of power lithium-ion batteries is facing significant challenges, such as improving charge and discharge ratios and adapting to harsh application scenarios. To maintain stable operations of the power system in the best state, the technical bottleneck of efficient and long-term heat dissipation needs to be overcome. At the same time, in the consumer market, the cost factors of engineering products, including design, materials, space volume, cooling refrigerants, and plumbing systems, need to be carefully considered. Therefore, the active thermal management system of power lithium-ion batteries, which is widely used and has great potential, needs to be systematically summarized. Progress: This paper comprehensively reviews research progress on the active thermal management of power lithium-ion batteries in recent years. First, we summarize the research status of single-phase thermal management methods, including forced air cooling, natural air cooling, immersion liquid cooling, and microchannel liquid cooling. In the context of low charge and discharge ratios and lightweight engineering, air cooling still plays an important role. The main factors affecting battery temperature include air flow rate, air flow velocity, battery layout, and flow channel design. The air cooling system has unique engineering advantages because of its low cost. With an increase in charge and discharge ratios, the effect of microchannel and immersion liquid cooling is significantly enhanced, which is beneficial in controlling the battery's temperature and temperature uniformity. Several factors, such as liquid flow rate and channel design, have notable effects on the battery's heat dissipation; however, corresponding costs also increase. Second, we discuss advanced cooling techniques based on gas/liquid two-phase flow, such as submerged boiling cooling and spray-integrated cooling. In the context of increasing demand for batteries with high charge and discharge ratios, these technologies provide efficient, flexible, and adaptable solutions to thermal management challenges. The cooling medium, the flow rate, and the nozzle arrangement all have different effects on the temperature of the battery, along with the size of the droplets. The feasibility of the comprehensive and market recovery costs to maintain profits and long-term development of the enterprise also needs to be considered. Conclusions and Prospects: Based on the literature review, this paper forecasts the progress trend of active thermal management technology from multiple application scenarios to meet the development needs of lithium electric power in sea, land, and air. We believe that the development of the active thermal management technology of the new generation of power lithium-ion batteries should fully consider practical engineering requirements, such as charge and discharge ratios and harsh application scenarios. Future research and development should focus on improving heat transfer efficiency, system integration, and intelligent control capabilities while overcoming the challenges of reliability, cost, adaptability to extreme operating conditions, and energy consumption optimization.

关键词

锂离子电池 / 主动热管理 / 空气冷却 / 液冷冷却 / 气/液两相冷却

Key words

lithium-ion battery / active thermal management / air cooling / liquid cooling / gas/liquid two-phase cooling

引用本文

导出引用
贺元骅, 苏星辰, 赵梁. 动力锂离子电池主动热管理研究进展[J]. 清华大学学报(自然科学版). 2025, 65(9): 1805-1820 https://doi.org/10.16511/j.cnki.qhdxxb.2025.22.046
Yuanhua HE, Xingchen SU, Liang ZHAO. Research progress on active thermal management of power battery[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(9): 1805-1820 https://doi.org/10.16511/j.cnki.qhdxxb.2025.22.046
中图分类号: TM911.3   

参考文献

1
VIKRAM S , VASHISHT S , RAKSHIT D , et al. Recent advancements and performance implications of hybrid battery thermal management systems for electric vehicles[J]. Journal of Energy Storage, 2024, 90, 111814.
2
王世学, 张宁, 高明. 动力汽车用锂电池热管理系统仿真分析[J]. 热科学与技术, 2016, 15(1): 40- 45.
WANG S X , ZHANG N , GAO M . Simulation analysis of lithium-ion battery thermal management in EV[J]. Journal of Thermal Science and Technology, 2016, 15(1): 40- 45.
3
WANG Q , JIANG B , LI B , et al. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2016, 64, 106- 128.
4
LIU H Q , WEI Z B , HE W D , et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review[J]. Energy Conversion and Management, 2017, 150, 304- 330.
5
AL-ZAREER M , DINCER I , ROSEN M A . A review of novel thermal management systems for batteries[J]. International Journal of Energy Research, 2018, 42(10): 3182- 3205.
6
王雅, 方林. 锂离子动力电池热管理方法研究进展[J]. 船电技术, 2019, 39(5): 14- 18.
WANG Y , FANG L . Research progress of battery thermal management on lithium-ion power batteries[J]. Marine Electric & Electronic Technology, 2019, 39(5): 14- 18.
7
王振, 李保国, 罗权权, 等. 电动汽车锂离子电池热管理系统研究进展[J]. 包装工程, 2020, 41(15): 232- 238.
WANG Z , LI B G , LUO Q Q , et al. Research progress in thermal management systems for li-ion batteries in electric vehicles[J]. Packaging Engineering, 2020, 41(15): 232- 238.
8
ZHAO G , WANG X L , NEGNEVITSKY M , et al. A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles[J]. Journal of Power Sources, 2021, 501, 230001.
9
ROE C , FENG X N , WHITE G , et al. Immersion cooling for lithium-ion batteries: A review[J]. Journal of Power Sources, 2022, 525, 231094.
10
SARVAR-ARDEH S , RASHIDI S , RAFEE R , et al. A review on the applications of micro-/mini-channels for battery thermal management[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(16): 7959- 7979.
11
KERMANI J R , TAHERI M M , PAKZAD H , et al. Hybrid battery thermal management systems based on phase transition processes: A comprehensive review[J]. Journal of Energy Storage, 2024, 86, 111227.
12
贺元骅, 余兴科, 樊榕, 等. 动力锂离子电池热管理技术研究进展[J]. 电池, 2022, 52(3): 337- 341.
HE Y H , YU X K , FAN R , et al. Research progress in thermal management technology of power li-ion battery[J]. Battery Bimonthly, 2022, 52(3): 337- 341.
13
YANG N X , ZHANG X W , LI G J , et al. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements[J]. Applied Thermal Engineering, 2015, 80, 55- 65.
14
FAN Y Q , BAO Y , LING C , et al. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries[J]. Applied Thermal Engineering, 2019, 155, 96- 109.
15
KANG D , LEE P Y , YOO K , et al. Internal thermal network model-based inner temperature distribution of high-power lithium-ion battery packs with different shapes for thermal management[J]. Journal of Energy Storage, 2020, 27, 101017.
16
MAHAMUD R , PARK C . Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of Power Sources, 2011, 196(13): 5685- 5696.
17
HAN T , KHALIGHI B , YEN E C , et al. Li-ion battery pack thermal management: Liquid versus air cooling[J]. Journal of Thermal Science and Engineering Applications, 2019, 11(2): 021009.
18
LI W , JISHNU A K , GARG A , et al. Heat transfer efficiency enhancement of lithium-ion battery packs by using novel design of herringbone fins[J]. Journal of Electrochemical Energy Conversion and Storage, 2020, 17(2): 021108.
19
SUN H G , DIXON R . Development of cooling strategy for an air cooled lithium-ion battery pack[J]. Journal of Power Sources, 2014, 272, 404- 414.
20
LU Z , YU X L , WEI L C , et al. Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement[J]. Applied Thermal Engineering, 2018, 136, 28- 40.
21
LIU Y Z , ZHANG J . Design a J -type air-based battery thermal management system through surrogate-based optimization[J]. Applied Energy, 2019, 252, 113426.
22
ZHANG F R , SHI Y Z , HE Y X , et al. Design and optimization of an F-type air-cooling structure for lithium-ion battery of electric vehicle[J]. Energy Technology: Generation, Conversion, Storage, Distribution, 2023, 11(9): 2300243.
23
YANG T R , YANG N X , ZHANG X W , et al. Investigation of the thermal performance of axial-flow air cooling for the lithium-ion battery pack[J]. International Journal of Thermal Sciences, 2016, 108, 132- 144.
24
NA X Y , KANG H F , WANG T , et al. Reverse layered air flow for Li-ion battery thermal management[J]. Applied Thermal Engineering, 2018, 143, 257- 262.
25
MOHAMMADIAN S K , ZHANG Y W . Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles[J]. Journal of Power Sources, 2015, 273, 431- 439.
26
DAN D , YAO C N , ZHANG Y J , et al. Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model[J]. Applied Thermal Engineering, 2019, 162, 114183.
27
ZHAO R , GU J J , LIU J . Optimization of a phase change material based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design[J]. Energy, 2017, 135, 811- 822.
28
何闯, 赵钦新, 梁志远. 具有扰流结构的风冷型锂电池包热管理系统优化[J/OL]. 郑州大学学报(工学版), 2024: 1-8. (2024-07-10)[2024-09-14]. DOI: 10.13705/j.issn.1671-6833.2025.01.002.
HE C, ZHAO Q X, LIANG Z Y. Performance optimization of air-cooled lithium battery pack thermal management system with turbulence structure[J/OL]. Journal of Zhengzhou University (Engineering Science), 2024: 1-8[2024-07-10]. DOI: 10.13705/j.issn.1671-6833.2025.01.002.(in Chinese)
29
Engineered fluids. AmpCool dielectric coolant[EB/OL]. [2018-11-23]. https://www.engineeredfluids.com/ampcool.
30
张春花, 姚俊妤, 钟玉华, 等. 锂电池模组结构设计及其关键参数分析优化[J/OL]. 机械设计与制造, 2024: 1-11. (2024-06-18)[2024-09-14]. DOI: 10.19356/j.cnki.1001-3997.20240617.049.
ZHANG C H, YAO J Y, ZHONG Y H, et al. Structural design of lithium battery module and optimization of its key parameters[J/OL]. Machinery Design & Manufacture, 2024: 1-11. (2024-06-18)[2024-09-14]. DOI: 10.19356/j.cnki.1001-3997.20240617.049.(in Chinese)
31
YE M , XU Y N , HUANG Y F . The structure optimization of lithium-ion battery pack based on fluid-solid conjugate thermodynamic analysis[J]. Energy Procedia, 2018, 152, 643- 648.
32
YU X L , LU Z , ZHANG L Y , et al. Experimental study on transient thermal characteristics of stagger-arranged lithium-ion battery pack with air cooling strategy[J]. International Journal of Heat and Mass Transfer, 2019, 143, 118576.
33
SEVERINO B , GANA F , PALMA-BEHNKE R , et al. Multi-objective optimal design of lithium-ion battery packs based on evolutionary algorithms[J]. Journal of Power Sources, 2014, 267, 288- 299.
34
LI W , XIAO M , PENG X B , et al. A surrogate thermal modeling and parametric optimization of battery pack with air cooling for EVs[J]. Applied Thermal Engineering, 2019, 147, 90- 100.
35
LIU J H , FAN Y N , WANG J H , et al. A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system[J]. Renewable Energy, 2022, 201, 712- 723.
36
SATYANARAYANA G , SUDHAKAR D R , GOUD V M , et al. Experimental investigation and comparative analysis of immersion cooling of lithium-ion batteries using mineral and Therminol oil[J]. Applied Thermal Engineering, 2023, 225, 120187.
37
WANG Z P , ZHAO R J , WANG S Z , et al. Heat transfer characteristics and influencing factors of immersion coupled direct cooling for battery thermal management[J]. Journal of Energy Storage, 2023, 62, 106821.
38
TIAN J M , MEI W X , TANG J , et al. Numerical study on heat dissipation and structure optimization of immersed liquid cooling mode used in 280Ah LiFePO4 batteries[J]. Process Safety and Environmental Protection, 2024, 185, 446- 457.
39
PATIL M S , SEO J H , PANCHAL S , et al. Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate[J]. International Journal of Heat and Mass Transfer, 2020, 155, 119728.
40
WANG N B , LI C B , LI W , et al. Heat dissipation optimization for a serpentine liquid cooling battery thermal management system: An application of surrogate assisted approach[J]. Journal of Energy Storage, 2021, 40, 102771.
41
MONIKA K , DATTA S P . Comparative assessment among several channel designs with constant volume for cooling of pouch-type battery module[J]. Energy Conversion and Management, 2022, 251, 114936.
42
WIRIYASART S , HOMMALEE C , SIRIKASEMSUK S , et al. Thermal management system with nanofluids for electric vehicle battery cooling modules[J]. Case Studies in Thermal Engineering, 2020, 18, 100583.
43
YIN B , ZUO S G , XU Y L , et al. Performance of liquid cooling battery thermal management system in vibration environment[J]. Journal of Energy Storage, 2022, 53, 105232.
44
WANG D , TANG M Y , WU C Z , et al. Design and numerical study of microchannel liquid cooling structures for lithium batteries[J]. Energy Technology, 2024, 12(6): 2301646.
45
PAN M Q , ZHONG X N , DONG G P , et al. Experimental study of the heat dissipation of battery with a manifold micro-channel heat sink[J]. Applied Thermal Engineering, 2019, 163, 114330.
46
RAO Z H , ZHANG X . Investigation on thermal management performance of wedge-shaped microchannels for rectangular Li-ion batteries[J]. International Journal of Energy Research, 2019, 43(8): 3876- 3890.
47
YANG X , WEI L C , CAO F , et al. A parametric study of laminar convective heat transfer in fractal minichannels with hexagonal fins[J]. International Journal of Energy Research, 2020, 44(12): 9382- 9398.
48
SALIMI A , KHOSHVAGHT-ALIABADI M , RASHIDI S . On thermal management of pouch type lithium-ion batteries by novel designs of wavy minichannel cold plates: Comparison of co-flow with counter-flow[J]. Journal of Energy Storage, 2022, 52, 104819.
49
ZUO S G , CHEN S P , YIN B . Performance analysis and improvement of lithium-ion battery thermal management system using mini-channel cold plate under vibration environment[J]. International Journal of Heat and Mass Transfer, 2022, 193, 122956.
50
ZHAO C R , CAO W J , DONG T , et al. Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow[J]. International Journal of Heat and Mass Transfer, 2018, 120, 751- 762.
51
TANG Z G , MIN X T , SONG A Q , et al. Thermal management of a cylindrical lithium-ion battery module using a multichannel wavy tube[J]. Journal of Energy Engineering, 2019, 145(1): 04018072.
52
TANG Z G , WANG S C , LIU Z Q , et al. Numerical analysis of temperature uniformity of a liquid cooling battery module composed of heat-conducting blocks with gradient contact surface angles[J]. Applied Thermal Engineering, 2020, 178, 115509.
53
FAN Z H , GAO R J , LIU S T . A novel battery thermal management system based on P type triply periodic minimal surface[J]. International Journal of Heat and Mass Transfer, 2022, 194, 123090.
54
SUN Y S , BAI R H , MA J . Development and analysis of a new cylindrical lithium-ion battery thermal management system[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 100.
55
LI Y , BAI M L , ZHOU Z F , et al. Experimental study of liquid immersion cooling for different cylindrical lithium-ion batteries under rapid charging conditions[J]. Thermal Science and Engineering Progress, 2023, 37, 101569.
56
WANG Y F , WU J T . Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles[J]. Energy Conversion and Management, 2020, 207, 112569.
57
ZHOU H K , DAI C H , LIU Y , et al. Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid[J]. Journal of Power Sources, 2020, 473, 228545.
58
LI Y , ZHOU Z F , ZHAO J , et al. Three-dimensional thermal simulations of 18650 lithium-ion batteries cooled by different schemes under high rate discharging and external shorting conditions[J]. Energies, 2021, 14(21): 6986.
59
LI Y , BAI M L , ZHOU Z F , et al. Experimental studies of reciprocating liquid immersion cooling for 18650 lithium-ion battery under fast charging conditions[J]. Journal of Energy Storage, 2023, 64, 107177.
60
YANG Y , YANG L J , DU X Z , et al. Pre-cooling of air by water spray evaporation to improve thermal performance of lithium battery pack[J]. Applied Thermal Engineering, 2019, 163, 114401.
61
YUE Q L , HE C X , JIANG H R , et al. A hybrid battery thermal management system for electric vehicles under dynamic working conditions[J]. International Journal of Heat and Mass Transfer, 2021, 164, 120528.
62
WU T T , WANG C H , HU Y X , et al. Research on spray cooling performance based on battery thermal management[J]. International Journal of Energy Research, 2022, 46(7): 8977- 8988.
63
FAN Z X , WANG Y A , XIE Z F , et al. Investigation on performance of battery thermal management system using spray cooling[J]. International Journal of Energy Research, 2022, 46(7): 8726- 8741.
64
DHUCHAKALLAYA I , SAECHAN P . Enhancing the cooling efficiency of the air cooling system for electric vehicle battery modules through liquid spray integration[J]. Journal of Energy Storage, 2023, 72, 108751.
65
JIANG Z Y , LI H B , SUN Z , et al. Experimental study on 18650 lithium-ion battery-pack cooling system composed of heat pipe and reciprocating air flow with water mist[J]. International Journal of Heat and Mass Transfer, 2024, 222, 125171.
66
WANG Y F , LI B , HU Y L , et al. Experimental study on immersion phase change cooling of lithium-ion batteries based on R1233ZD(E)/ethanol mixed refrigerant[J]. Applied Thermal Engineering, 2023, 220, 119649.
67
LI Y L , ZHOU Z F , SU L S , et al. Numerical simulations for indirect and direct cooling of 54 V LiFePO4 battery pack[J]. Energies, 2022, 15(13): 4581.
68
WANG Y H , LI C E , WEN X D , et al. Experimental studies on two-phase immersion liquid cooling for Li-ion battery thermal management[J]. Journal of Energy Storage, 2023, 72, 108748.
69
WILLIAMS N P , TRIMBLE D , O'SHAUGHNESSY S M . Liquid immersion thermal management of lithium-ion batteries for electric vehicles: An experimental study[J]. Journal of Energy Storage, 2023, 72, 108636.
70
LI Y , ZHOU Z F , HU L M , et al. Experimental studies of liquid immersion cooling for 18650 lithium-ion battery under different discharging conditions[J]. Case Studies in Thermal Engineering, 2022, 34, 102034.
71
LI X T , ZHOU Z Y , ZHANG M J , et al. A liquid cooling technology based on fluorocarbons for lithium-ion battery thermal safety[J]. Journal of Loss Prevention in the Process Industries, 2022, 78, 104818.
72
LI Y , BAI M L , ZHOU Z F , et al. Experimental investigations of liquid immersion cooling for 18650 lithium-ion battery pack under fast charging conditions[J]. Applied Thermal Engineering, 2023, 227, 120287.
73
安庆龙, 傅玉灿, 徐九华, 等. 低温气动喷雾射流冲击冷却技术在钛合金磨削中的应用[J]. 中国机械工程, 2006, 17(11): 1117- 1120.
AN Q L , FU Y C , XU J H , et al. Application of cryogenic pneumatic mist jet impinging in grinding of Ti-6Al-4V[J]. China Mechanical Engineering, 2006, 17(11): 1117- 1120.
74
WANG J X , GUO W , XIONG K , et al. Review of aerospace-oriented spray cooling technology[J]. Progress in Aerospace Sciences, 2020, 116, 100635.
75
CHEN H , RUAN X H , PENG Y H , et al. Application status and prospect of spray cooling in electronics and energy conversion industries[J]. Sustainable Energy Technologies and Assessments, 2022, 52, 102181.
76
董彬, 孙权, 高春艳, 等. 动力电池喷雾冷却换热特性研究[J]. 工程热物理学报, 2022, 43(6): 1588- 1595.
DONG B , SUN Q , GAO C Y , et al. Study on spray cooling heat transfer performance of power battery[J]. Journal of Engineering Thermophysics, 2022, 43(6): 1588- 1595.
77
KANDASAMY R , HO J Y , LIU P F , et al. Two-phase spray cooling for high ambient temperature data centers: Evaluation of system performance[J]. Applied Energy, 2022, 305, 117816.
78
ZHANG W W , CHENG W L , SHAO S D , et al. Integrated thermal control and system assessment in plug-chip spray cooling enclosure[J]. Applied Thermal Engineering, 2016, 108, 104- 114.
79
LIU P F , KANDASAMY R , HO J Y , et al. Dynamic performance analysis and thermal modelling of a novel two-phase spray cooled rack system for data center cooling[J]. Energy, 2023, 269, 126835.
80
CHEN H , CHENG W L , ZHANG W W , et al. Energy saving evaluation of a novel energy system based on spray cooling for supercomputer center[J]. Energy, 2017, 141, 304- 315.
81
WANG J X , LI Y Z , YU X K , et al. Investigation of heat transfer mechanism of low environmental pressure large-space spray cooling for near-space flight systems[J]. International Journal of Heat and Mass Transfer, 2018, 119, 496- 507.
82
HUANG Y Q , WU Y H , LIU B H . Experimental investigation into the use of emergency spray on suppression of battery thermal runaway[J]. Journal of Energy Storage, 2021, 38, 102546.
83
DONG H H , RUAN L , WANG Y , et al. Performance of air/spray cooling system for large-capacity and high-power-density motors[J]. Applied Thermal Engineering, 2021, 192, 116925.
84
NIŽETIĆ S , ČOKO D , YADAV A , et al. Water spray cooling technique applied on a photovoltaic panel: The performance response[J]. Energy Conversion and Management, 2016, 108, 287- 296.
85
SUN Y B , GUAN Z Q , GURGENCI H , et al. A study on multi-nozzle arrangement for spray cooling system in natural draft dry cooling tower[J]. Applied Thermal Engineering, 2017, 124, 795- 814.
86
LI LY , PATI A R , PANDA A , et al. High mass flux spray quenching on an inclined surface: A novel methodology for the attainment of enhanced uniform cooling with unaltered surface morphology in transition boiling regime[J]. International Journal of Heat and Mass Transfer, 2019, 131, 11- 30.
87
GRISSOM W M , WIERUM F A . Liquid spray cooling of a heated surface[J]. International Journal of Heat and Mass Transfer, 1981, 24(2): 261- 271.
88
PAUTSCH A G, SHEDD T A, NELLIS G F. Thickness measurements of the thin film in spray evaporative cooling[C]//The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Las Vegas, USA: IEEE, 2004: 70-76.
89
QIAN L Q . A thermal-structure coupled optimization study of lithium-ion battery modules with mist cooling[J]. International Journal of Energy Research, 2020, 44(15): 12295- 12311.
90
史磊, 耿东, 王守栖. 基于气-液两相换热的混合动力汽车动力电池一体化热管理系统的研究[J]. 移动电源与车辆, 2017(3): 26- 30.
SHI L , GENG D , WANG S Q . Design of battery thermal management system for hybrid electric vehicle based on gas-liquid two-phase heat transfer[J]. Movable Power Station & Vehicle, 2017(3): 26- 30.
91
WU N , CHEN Y S , LIN B S , et al. Experimental assessment and comparison of single-phase versus two-phase liquid cooling battery thermal management systems[J]. Journal of Energy Storage, 2023, 72, 108727.
92
LIN X W , LI Y B , WU W T , et al. Advances on two-phase heat transfer for lithium-ion battery thermal management[J]. Renewable and Sustainable Energy Reviews, 2024, 189, 114052.

基金

国家自然科学基金重点项目(U2333210)
中央高校基本科研业务费资助项目(24CAFUC10161)

版权

版权所有,未经授权,不得转载。
PDF(18608 KB)

Accesses

Citation

Detail

段落导航
相关文章

/