冻结煤未冻水与孔隙特征变化核磁共振研究

秦雷, 王辉, 李树刚, 刘鹏飞, 李嘉伟

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (3) : 601-613.

PDF(10780 KB)
PDF(10780 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (3) : 601-613. DOI: 10.16511/j.cnki.qhdxxb.2025.26.005
论文

冻结煤未冻水与孔隙特征变化核磁共振研究

  • 秦雷1,2, 王辉1,2, 李树刚1,2, 刘鹏飞1,2, 李嘉伟1,2
作者信息 +

Nuclear magnetic resonance study of changes in unfrozen water and pore characteristics in frozen coal

  • QIN Lei1,2, WANG Hui1,2, LI Shugang1,2, LIU Pengfei1,2, LI Jiawei1,2
Author information +
文章历史 +

摘要

由于液氮致裂技术是一种重要的煤层增渗技术, 且低温下的煤孔隙水相变严重影响煤孔隙结构, 因此, 研究液氮循环冻结导致的煤孔隙水相变和孔隙演化对评价液氮致裂增渗效果, 以及提高煤层气抽采效率具有重要意义。该文对饱水烟煤进行不同次数的液氮冻融循环处理, 基于低场核磁共振测试技术, 测试煤样的横向弛豫时间曲线、 累计孔隙度和累计孔喉分布。结果表明: 煤样在-196 ℃冻结条件下, 煤孔隙内仍存在微量未冻水, 随温度升高, 小孔隙冰先开始融化, 产生小孔隙未冻水, 孔径越小, 孔隙冰的熔点越低。随着孔隙冰逐渐融化, 累计孔隙度不断增大, 增长过程可分为指数函数式快速增长、 一次函数式匀速增长和二次函数式增长3个阶段。对横向弛豫时间曲线进行积分, 可获得煤样融化过程中的孔隙未冻水变化, 并进行拟合, 可观察到, 在负温区间, 未冻水含量随温度升高呈指数函数式变化, 越接近0 ℃, 未冻水含量增速越快。-196~-34 ℃, 微孔未冻水占比接近100%; -20~0 ℃, 以中、 大孔隙未冻水为主。循环冻结可有效提高煤样的有效孔隙度和渗透率。该文基于SDR(Schlumberger-Doll Research)渗透率模型, 计算了煤样冻融循环后的渗透率变化。煤样的有效孔隙度和渗透率的增长率随循环次数的增加而增加, 当循环次数由5次增至30 次时, 有效孔隙度增长率由20.68%增至24.15%, 渗透率增长率由109.73%增至122.20%, 但随着循环次数不断增加, 冻融循环次数对煤样增渗作用的边际效应愈发明显。该文研究结果可为低温介质循环冻融煤体渗流孔隙结构演变研究和与液氮致裂增渗相关的现场作业提供参考。

Abstract

[Objective] Coalbed methane (CBM) outbursts pose a threat to coal mining safety, particularly in China, where many coal seams exhibit low permeability, making CBM extraction inefficient. Liquid nitrogen fracturing technology is an important anhydrous method for enhancing coal seam permeability. The phase transition of coal pore water under low temperature conditions profoundly affects the coal pore structure. Studying the pore-water phase transition and pore changes during low-temperature liquid nitrogen freeze-thaw cycles is crucial for evaluating the effectiveness of this technology and improving CBM extraction efficiency. [Methods] This experiment involves four groups of water-saturated bituminous coal samples, each subjected to different numbers of liquid nitrogen freeze-thaw cycles. The transverse relaxation time T2 curve, cumulative porosity, and cumulative pore throat distribution of coal samples in the initial, frozen and thawed states were evaluated by using low-field nuclear magnetic resonance (NMR). [Results] These findings showed the following: (1) Even at -196 ℃, trace amounts of unfrozen water remained in the coal pores. As the temperature increased, the ice in the smaller pores first melted, producing micropore unfrozen water. Smaller pore diameters corresponded to lower pore melting pints of pore ice. (2) As the pore ice gradually melted, the cumulative porosity increased in three stages: exponential function type rapid growth, primary function type uniform growth, and quadratic function type growth. (3) By integrating the T2 curve, it is observed that the unfrozen water content changed exponentially with increasing temperature in the negative temperature intervals. Closer to 0 ℃, the unfrozen water content growth rate increased. At temperatures between -196 ℃ and -34 ℃, micropore unfrozen water constituted nearly 100%, whereas temperatures between -20 ℃ and 0 ℃ saw mesopore and macropore unfrozen water dominating. (4) NMR tests on raw and fully melted coal samples revealed that the permeability of coal samples increased with the number of freeze-thaw cycles. The effective porosity and permeability growth rates increased from 20.68% to 24.15% and 109.73% to 122.20% respectively, as the number of cycles increased from 5 to 30. However, the marginal utility of permeability enhancement of coal samples became increasingly pronounced. [Conclusions] Liquid nitrogen cyclic freezing of coal effectively increases the effective porosity and permeability of water-saturated coal. Liquid nitrogen fracturing can be used as an anhydrous fracturing technology to increase the coal seam permeability in water-scarce coal mining areas, thus improving the CBM extraction efficiency. The results of this study can provide valuable insights into the evolution of seepage pore structure during low-temperature medium cyclic freezing and thawing of coal and guide field operations related to liquid nitrogen fracturing and permeability enhancement.

关键词

液氮致裂 / 未冻水 / 孔隙结构 / 低场核磁共振

Key words

liquid nitrogen fracturing / unfrozen water / pore structure / low-field nuclear magnetic resonance

引用本文

导出引用
秦雷, 王辉, 李树刚, 刘鹏飞, 李嘉伟. 冻结煤未冻水与孔隙特征变化核磁共振研究[J]. 清华大学学报(自然科学版). 2025, 65(3): 601-613 https://doi.org/10.16511/j.cnki.qhdxxb.2025.26.005
QIN Lei, WANG Hui, LI Shugang, LIU Pengfei, LI Jiawei. Nuclear magnetic resonance study of changes in unfrozen water and pore characteristics in frozen coal[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(3): 601-613 https://doi.org/10.16511/j.cnki.qhdxxb.2025.26.005

参考文献

[1] WEI M Y, LIU Y K, LIU J S, et al. Micro-scale investigation on coupling of gas diffusion and mechanical deformation of shale [J]. Journal of Petroleum Science and Engineering, 2019, 175: 961-970.
[2] SUN Y, ZHAI C, XU J Z, et al. A method for accurate characterisation of the pore structure of a coal mass based on two-dimensional nuclear magnetic resonance T1-T2 [J]. Fuel, 2020, 262: 116574.
[3] YAN M, ZHOU M, LI S G, et al. Numerical investigation on the influence of micropore structure characteristics on gas seepage in coal with lattice Boltzmann method [J]. Energy, 2021, 230: 120773.
[4] 黄炳香, 程庆迎, 刘长友, 等. 煤岩体水力致裂理论及其工艺技术框架[J]. 采矿与安全工程学报, 2011, 28(2): 167-173. HUANG B X, CHENG Q Y, LIU C Y, et al. Hydraulic fracturing theory of coal-rock mass and its technical framework [J]. Journal of Mining & Safety Engineering, 2011, 28(2): 167-173. (in Chinese)
[5] 张东明, 白鑫, 尹光志, 等. 低渗煤层液态CO2相变定向射孔致裂增透技术及应用[J]. 煤炭学报, 2018, 43(7): 1938-1950. ZHANG D M, BAI X, YIN G Z, et al. Research and application on technology of increased permeability by liquid CO2 phase change directional jet fracturing in low- permeability coal seam [J]. Journal of China Coal Society, 2018, 43(7): 1938-1950. (in Chinese)
[6] 王旭锋, 牛志军, 张磊, 等. 超声振动在矿山煤岩致裂中的研究进展与展望[J]. 煤炭科学技术, 2024, 52(1): 232-243. WANG X F, NIU Z J, ZHANG L, et al. Research progress and prospects of ultrasonic vibration in coal rock fracturing [J]. Coal Science and Technology, 2024, 52(1): 232-243. (in Chinese)
[7] 柴亚博, 罗宁, 张浩浩, 等. 甲烷燃爆载荷下页岩裂缝网络发育特征与定量分析[J]. 煤炭学报, 2023, 48(12): 4308-4321. CHAI Y B, LUO N, ZHANG H H, et al. Development characteristics and quantitative analysis of shale fracture network under methane explosion load [J]. Journal of China Coal Society, 2023, 48(12): 4308-4321. (in Chinese)
[8] 刘佳佳, 聂子硕, 于宝种, 等. 超临界二氧化碳对煤体增透的作用机理及影响因素分析[J]. 煤炭科学技术, 2023, 51(2): 204-216. LIU J J, NIE Z S, YU B Z, et al. Analysis of the mechanism and influencing factors of supercritical carbon dioxide on coal permeability enhancement [J]. Coal Science and Technology, 2023, 51(2): 204-216. (in Chinese)
[9] 乔伟. 顺层长钻孔中压水力割缝增透技术及应用[J]. 矿业安全与环保, 2022, 49(2): 122-126. QIAO W. Application on anti-reflection technology of long borehole along coal seam with medium pressure hydraulic slotting [J]. Mining Safety & Environmental Protection, 2022, 49(2): 122-126. (in Chinese)
[10] SHAO Z L, YE S, TAO S J, et al. Experimental study of the effect of liquid nitrogen penetration on damage and fracture characteristics in dry and saturated coals [J]. Journal of Petroleum Science and Engineering, 2021, 201: 108374.
[11] 秦雷, 马超, 李树刚, 等. 液氮作用下冻结态与融化态煤体力学特征及劣化机理研究[J]. 采矿与安全工程学报, 2024, 41(2): 395-406. QIN L, MA C, LI S G, et al. Study on mechanical characteristics and deterioration mechanism of frozen and melted coal under the action of liquid nitrogen [J]. Journal of Mining & Safety Engineering, 2024, 41(2): 395-406. (in Chinese)
[12] 楚亚培, 张东明, 王满, 等. 基于核磁共振技术和压汞法的液氮冻融煤体孔隙结构损伤演化规律试验研究[J]. 岩石力学与工程学报, 2022, 41(9): 1820-1831. CHU Y P, ZHANG D M, WANG M, et al. Experiment study on influence of liquid nitrogen freeze-thaw on pore structure of coal based on nuclear magnetic resonance technology and mercury intrusion methods [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(9): 1820-1831. (in Chinese)
[13] LI B, HUANG L S, LÜ X Q, et al. Variation features of unfrozen water content of water-saturated coal under low freezing temperature [J]. Scientific Reports, 2021, 11(1): 15398.
[14] 翟成, 董若蔚. 低温冻结石门揭煤煤体未冻水含量变化特征[J]. 煤炭科学技术, 2019, 47(1): 132-138. ZHAI C, DONG R W. Variation features of unfrozen water content of coal under low temperature freezing in uncovering coal in cross-cut [J]. Coal Science and Technology, 2019, 47(1): 132-138. (in Chinese)
[15] 冷毅飞, 张喜发, 杨凤学, 等. 冻土未冻水含量的量热法试验研究[J]. 岩土力学, 2010, 31(12): 3758-3764. LENG Y F, ZHANG X F, YANG F X, et al. Experimental research on unfrozen water content of frozen soils by calorimetry [J]. Rock and Soil Mechanics, 2010, 31(12): 3758-3764. (in Chinese)
[16] AZMATCH T F, SEGO D C, ARENSON L U, et al. Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils [J]. Cold Regions Science and Technology, 2012, 83-84: 103-109.
[17] CHRIST M, PARK J B. Ultrasonic technique as tool for determining physical and mechanical properties of frozen soils [J]. Cold Regions Science and Technology, 2009, 58(3): 136-142.
[18] 刘波, 李东阳. 人工冻结粉土未冻水含量测试试验研究[J]. 岩石力学与工程学报, 2012, 31(S2): 3696-3702. LIU B, LI D Y. Test study of unfrozen water content in artificial frozen silt [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3696-3702. (in Chinese)
[19] 刘慧, 杨更社, 叶万军, 等. 基于CT图像三值分割的冻结岩石水冰含量及损伤特性分析[J]. 采矿与安全工程学报, 2016, 33(6): 1130-1137. LIU H, YANG G S, YE W J, et al. Analysis of water and ice content and damage characteristics of the frozen rock during freezing based on the three-valued segmentation of CT images [J]. Journal of Mining & Safety Engineering, 2016, 33(6): 1130-1137. (in Chinese)
[20] SPARRMAN T, ÖQUIST M, KLEMEDTSSON L, et al. Quantifying unfrozen water in frozen soil by high-field 2H NMR [J]. Environmental Science & Technology, 2004, 38(20): 5420-5425.
[21] LIANG Y P, TAN Y T, WANG F K, et al. Improving permeability of coal seams by freeze-fracturing method: The characterization of pore structure changes under low-field NMR [J]. Energy Reports, 2020, 6: 550-561.
[22] 徐吉钊, 翟成, 桑树勋, 等. 基于低场核磁共振技术的液态CO2循环致裂煤体孔隙特征演化规律[J]. 煤炭学报, 2021, 46(11): 3578-3589. XU J Z, ZHAI C, SANG S X, et al. Pore evolution of coals affected by cyclical liquid CO2, fracturing based on the low-field nuclear magnetic resonances [J]. Journal of China Coal Society, 2021, 46(11): 3578-3589. (in Chinese)
[23] 翟成, 孙勇, 范宜仁, 等. 低场核磁共振技术在煤孔隙结构精准表征中的应用与展望[J]. 煤炭学报, 2022, 47(2): 828-848. ZHAI C, SUN Y, FAN Y R, et al. Application and prospect of low-field nuclear magnetic resonance technology in accurate characterization of coal pore structure [J]. Journal of China Coal Society, 2022, 47(2): 828-848. (in Chinese)
[24] YAO Y B, LIU D M, CHE Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR) [J]. Fuel, 2010, 89(7): 1371-1380.
[25] CHEN Y Q, ZHOU Z F, WANG J G, et al. Quantification and division of unfrozen water content during the freezing process and the influence of soil properties by low-field nuclear magnetic resonance [J]. Journal of Hydrology, 2021, 602: 126719.
[26] KIM H S, NISHIYAMA Y, IDETA K, et al. Analysis of water in Loy Yang brown coal using solid-state 1H NMR [J]. Journal of Industrial and Engineering Chemistry, 2013, 19(5): 1673-1679.
[27] 王琨, 周航宇, 赖杰, 等. 核磁共振技术在岩石物理与孔隙结构表征中的应用[J]. 仪器仪表学报, 2020, 41(2): 101-114. WANG K, ZHOU H Y, LAI J, et al. Application of NMR technology in characterization of petrophysics and pore structure [J]. Chinese Journal of Scientific Instrument, 2020, 41(2): 101-114. (in Chinese)
[28] CHU Y P, ZHANG D M. Study on the pore evolution law of anthracite coal under liquid nitrogen freeze-thaw cycles based on infrared thermal imaging and nuclear magnetic resonance [J]. Energy Science & Engineering, 2019, 7(6): 3344-3354.
[29] CAI Y D, LIU D M, PAN Z J, et al. Petrophysical characterization of Chinese coal cores with heat treatment by nuclear magnetic resonance [J]. Fuel, 2013, 108: 292-302.
[30] ZHOU J Z, WEI C F, LAI Y M, et al. Application of the generalized clapeyron equation to freezing point depression and unfrozen water content [J]. Water Resources Research, 2018, 54(11): 9412-9431.
[31] SAFARI H, FARAMARZI-PALANGAR M, HASHEMI S M H, et al. A new approach to 3D saturation height modeling by coupling a capillary pressure model with pore throat size distribution [J]. Natural Resources Research, 2022, 31(2): 1045-1059.
[32] BUCHMAN S, CANDELA D, VETTERLING W T, et al. NMR Curie-law thermometry for solid hydrogen [J]. Physica B+C, 1981, 107(1-3): 193-194.
[33] 泰斯A R, 奥利丰特J L, 朱元林, 等. 用脉冲核磁共振法及物理解吸试验测定的冻土中冰和未冻水之间的关系[J]. 冰川冻土, 1983, 5(2): 37-46. TICE A R, OLIPHANT J L, ZHU Y L, et al. Relationship between the ice and unfrozen water phases in frozen soils as determined by pulsed nuclear resonance and physical desorption data [J]. Journal of Glaciology and Geocryology, 1983, 5(2): 37-46. (in Chinese)
[34] LI H, LIN B Q, YANG W, et al. Experimental study on the petrophysical variation of different rank coals with microwave treatment [J]. International Journal of Coal Geology, 2016, 154-155: 82-91.
[35] LIU Z S, LIU D M, CAI Y D, et al. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review [J]. International Journal of Coal Geology, 2020, 218: 103261.
[36] QIN L, ZHAI C, LIU S M, et al. Changes in the petrophysical properties of coal subjected to liquid nitrogen freeze-thaw: A nuclear magnetic resonance investigation [J]. Fuel, 2017, 194: 102-114.
[37] WESTPHAL H, SURHOLT I, KIESL C, et al. NMR measurements in carbonate rocks: Problems and an approach to a solution [J]. Pure and Applied Geophysics, 2005, 162(3): 549-570.
[38] YAO Y B, LIU D M, LIU J G, et al. Assessing the water migration and permeability of large intact bituminous and anthracite coals using NMR relaxation spectrometry [J]. Transport in Porous Media, 2015, 107: 527-542.

基金

中国科协青年人才托举工程项目(2022QNRC001);陕西省青年人才托举计划项目(20220437);陕西省青年科技新星项目(2022KJXX-59);国家自然科学基金项目(51904237)

PDF(10780 KB)

Accesses

Citation

Detail

段落导航
相关文章

/