基于生成对抗网络的自由曲面网格智能划分

侯江军, 陆金钰, 陈辰, 杨守钒, 翟效伟, 徐烯铭

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (7) : 1250-1259.

PDF(12801 KB)
PDF(12801 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (7) : 1250-1259. DOI: 10.16511/j.cnki.qhdxxb.2025.26.024
智能建造

基于生成对抗网络的自由曲面网格智能划分

作者信息 +

Generative adversarial network-based intelligent grid partitioning of free-form surfaces

Author information +
文章历史 +

摘要

多样和不规则的建筑自由曲面使自由曲面网格划分成为难题,现有显示编程方法由于过于针对具体曲面,因此缺乏通用性。该文提出利用生成对抗网络模型挖掘并学习自由曲面与对应网格结构的内在规律,以实现在模型中输入自由曲面即可生成对应网格结构的目的。该文首先利用二维云图表示自由曲面,并将其作为模型的输入;其次,使用自编算法提取模型生成网格结构的节点坐标和各节点之间的拓扑关系,并将其投影至三维空间,获得三维自由曲面网格结构;最后,对比了该文所提方法与基于显示编程的三角形和四边形网格划分方法,并通过多个案例测试了该文所提方法。基于网格几何特性杆长和形状质量的评价结果表明:该文所提方法可实现多种形状自由曲面的网格划分。

Abstract

Objective: Architectural free-form surfaces often rely on nonuniform rational B-splines for delineation, posing significant challenges for grid partitioning owing to their diverse and irregular configurations. Prevailing grid partitioning methods are tailored to specific free-form geometries, leading to a lack of universality in extant explicit programming algorithms because of their specificity. Structural design, including grid partitioning, largely depends on the empirical knowledge and intuitive judgment of designers. As interdisciplinary collaboration and efficient design processes escalate, the need for accuracy and speed has increased. To alleviate the intrinsic limitations of explicit programming and mitigate overdependence on the designer acumen, this paper proposes the use of a generative adversarial network model to elucidate and integrate the logical correlation between free-form surfaces and their corresponding grid structures. This approach enables the generation of grid structures from free-form surfaces as inputs to the generative adversarial network model. Methods: The process starts with a preprocessing regimen for free-form surfaces. To fit the two-dimensional input and output framework of the generative adversarial network model, a self-developed algorithm generates curvature and height cloud maps representing the free-form surface, which are used as inputs to the generative adversarial network model. The pix2pixHD model is modified to allow both curvature and height cloud maps to be input simultaneously into the generator and discriminator. These cloud maps are then fed into the grid generative adversarial network(GridGAN) model, which has been pretrained and validated to derive grid partitioning outputs. In the postprocessing phase, the two-dimensional grid data is transformed into three-dimensional grid structures by extracting nodal points and their topological relationships from the grid layout. This information is subsequently projected into three-dimensional space. The effectiveness of the proposed method is demonstrated through a comparative analysis with two existing explicit programming grid partitioning algorithms (one quadrilateral and one triangular). Multiple examples are used to evaluate the generative design approach, employing evaluation metrics based on grid geometric properties such as rod length factor and shape quality factor. Results: The case studies indicated that the intelligent free-form grid partitioning method proposed in this paper performed comparably to the triangular and quadrilateral grid partitioning algorithms used in explicit programming. The maximum relative error recorded was 2.908% for the mean rod length and 1.133% for the shape quality factor, both of which fell within acceptable limits. Conclusions: These findings confirm that the proposed approach achieves grid partitioning outcomes comparable to those of various explicit programming algorithms. It effectively handles free-form surfaces with diverse shapes. This research introduces a methodological perspective in architectural design and establishes a robust foundation for future research and applications. It has the potential to catalyze the evolution of design practices toward greater efficiency and intelligence.

关键词

建筑自由曲面 / 网格划分 / 智能结构设计 / 深度学习 / 生成对抗网络

Key words

architectural free-form surfaces / grid partitioning / intelligent structural design / deep learning / generative adversarial networks

引用本文

导出引用
侯江军, 陆金钰, 陈辰, . 基于生成对抗网络的自由曲面网格智能划分[J]. 清华大学学报(自然科学版). 2025, 65(7): 1250-1259 https://doi.org/10.16511/j.cnki.qhdxxb.2025.26.024
Jiangjun HOU, Jinyu LU, Chen CHEN, et al. Generative adversarial network-based intelligent grid partitioning of free-form surfaces[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(7): 1250-1259 https://doi.org/10.16511/j.cnki.qhdxxb.2025.26.024
中图分类号: TU318+.3   

参考文献

1
廖杰. 波浪形自由曲面空间网格结构形态分析与稳定性能研究[D]. 南京: 东南大学, 2017.
LIAO J. Research on the configuration and stability of the wave-shaped free-form grid shell[D]. Nanjing: Southeast University, 2017. (in Chinese)
2
WANG Q S , GAO B Q , WU H . Triangular mesh generation on free-form surfaces based on bubble dynamics simulation[J]. Engineering Computations, 2019, 36 (2): 646- 663.
3
LI Z , YE J , GAO B Q , et al. Digital and automatic design of free-form single-layer grid structures[J]. Automation in Construction, 2022, 133, 104025.
4
GAO B Q , LI T R , MA T , et al. A practical grid generation procedure for the design of free-form structures[J]. Computers & Structures, 2018, 196, 292- 310.
5
SHEPHERD P , RICHENS P . The case for Subdivision surfaces in building design[J]. Journal of the International Association for Shell and Spatial Structures, 2012, 53 (4): 237- 245.
6
WANG Q S , GAO B Q , LI T R , et al. A triangular mesh generator over free-form surfaces for architectural design[J]. Automation in Construction, 2018, 93, 280- 292.
7
PENG C H , POTTMANN H , WONKA P . Designing patterns using triangle-quad hybrid meshes[J]. ACM Transactions on Graphics, 2018, 37 (4): 107.1- 107.14.
8
廖文杰, 陆新征, 黄羽立, 等. 剪力墙结构智能化生成式设计方法: 从数据驱动到物理增强[J]. 土木与环境工程学报, 2024, 46 (1): 82- 92.
LIAO W J , LU X Z , HUANG Y L , et al. Intelligent generative structural design methods for shear wall buildings: From data-driven to physics-enhanced[J]. Journal of Civil and Environmental Engineering, 2024, 46 (1): 82- 92.
9
LIAO W J , LU X Z , FEI Y F , et al. Generative AI design for building structures[J]. Automation in Construction, 2024, 157, 105187.
10
XU B Q , LIU C . A 3D reconstruction method for buildings based on monocular vision[J]. Computer-Aided Civil and Infrastructure Engineering, 2022, 37 (3): 354- 369.
11
程国忠, 周绪红, 刘界鹏, 等. 基于深度强化学习的高层剪力墙结构智能设计方法[J]. 建筑结构学报, 2022, 43 (9): 84- 91.
CHENG G Z , ZHOU X H , LIU J P , et al. Intelligent design method of high-rise shear wall structures based on deep reinforcement learning[J]. Journal of Building Structures, 2022, 43 (9): 84- 91.
12
王念念. 深度学习在古建筑表面损伤检测中的应用研究[D]. 大连: 大连理工大学, 2019.
WANG N N. Research on deep learning and applied for surface damage detection of historic buildings[D]. Dalian: Dalian University of Technology, 2019. (in Chinese)
13
吴聿飏. 基于计算机视觉和深度学习的钢筋混凝土结构智能设计方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
WU Y Y. Research on intelligent design method of reinforced concrete structure based on computer vision and deep learning[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
14
LIAO W J , LU X Z , HUANG Y L , et al. Automated structural design of shear wall residential buildings using generative adversarial networks[J]. Automation in Construction, 2021, 132, 103931.
15
杜文风, 王英奇, 王辉, 等. 基于拓扑优化和深度学习的新型结构生成方法[J]. 计算力学学报, 2022, 39 (4): 435- 442.
DU W F , WANG Y Q , WANG H , et al. The generation method of innovative structures based on topology optimization and deep learning[J]. Chinese Journal of Computational Mechanics, 2022, 39 (4): 435- 442.
16
WANG T C, LIU M Y, ZHU J Y, et al. High-resolution image synthesis and semantic manipulation with conditional GANs[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2018: 8798-8807.
17
GOODFELLOW I , POUGET-ABADIE J , MIRZA M , et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63 (11): 139- 144.
18
PEET F G , SAHOTA T S . Surface curvature as a measure of image texture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, 7 (6): 734- 738.
19
HILTON A , ILLINGWORTH J , WINDEATT T . Statistics of surface curvature estimates[J]. Pattern Recognition, 1995, 28 (8): 1201- 1221.
20
刘钊. 基于点云数据的曲率急变曲面高精重构方法[D]. 大连: 大连理工大学, 2020.
LIU Z. High precision reconstruction of curved surface with rapidly changing curvature based on point cloud data[D]. Dalian: Dalian University of Technology, 2020. (in Chinese)
21
赵璐璐. 自由曲面网格结构形态优化、网格划分及一体化设计方法研究[D]. 南京: 东南大学, 2023.
ZHAO L L. Research on shape optimization, grid generation and integrated design method of free-form space grid structure[D]. Nanjing: Southeast University, 2023. (in Chinese)
22
李峥. 自由曲面四边形建筑网格划分及平面化研究[D]. 南京: 东南大学, 2019.
LI Z. Research on quadrilateral grid generation and planarization for free-form grid structures[D]. Nanjing: Southeast University, 2019. (in Chinese)
23
陆金钰, 侯江军, 徐烯铭, 等. 一种还原平面建筑自由曲面网格结构至三维空间的方法: 202311200721.2[P]. 2023-12-19.
LU J Y, HOU J J, XU X M, et al. Method for restoring planar building free-form surface grid structure to three-dimensional space: 202311200721.2[P]. 2023-12-19. (in Chinese)
24
丁慧. 自由形态空间网格结构的网格设计方法研究与实现[D]. 杭州: 浙江大学, 2014.
DING H. Research and implementation of grid design method for free-form grid structures[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)

基金

江苏高校“青蓝工程”中青年学术带头人项目
江苏省“六大人才高峰”高层次人才项目(JZ-010)

版权

版权所有,未经授权,不得转载。
PDF(12801 KB)

Accesses

Citation

Detail

段落导航
相关文章

/