基于双目视觉的管片错台精确测量方法

关振长, 陈东, 徐铭泽, 刘印, 许超

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (7) : 1359-1367.

PDF(8352 KB)
PDF(8352 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (7) : 1359-1367. DOI: 10.16511/j.cnki.qhdxxb.2025.26.026
土木工程

基于双目视觉的管片错台精确测量方法

作者信息 +

Accurate measurement method for segment dislocation using binocular vision

Author information +
文章历史 +

摘要

盾构隧道衬砌普遍存在管片错台现象,严重时影响衬砌结构安全和服役性能,该文采用双目视觉测量技术测量盾构隧道管片错台。首先,标定消费级双目相机获得相机内外参数,并采用深度学习立体匹配算法计算管片双目图像的准确视差信息;其次,提取管片接缝骨架,采用最小二乘法进行直线拟合,得到接缝附近关键点的像素坐标,并基于三角测量原理计算关键点的相机三维坐标;再次,基于关键点的相机三维坐标建立管片坐标系,并确定管片坐标系与相机坐标系的转换关系;最后,提出相机姿态修正方法,以精确计算管片错台量。对比基于双目视觉的管片错台精确测量结果与焊缝规实测结果表明,双目相机正对接缝拍摄时,经相机姿态修正的计算结果与实测结果较一致,绝对误差不超过1.0 mm,且图像处理效率较高;对于倾斜拍摄情形,当相机坐标系相对于管片坐标系绕其Xc轴和Yc轴的姿态角分别处于(180.00±15.00)°和±20.00°范围时,该方法同样能有效修正计算结果,鲁棒性较强。该文研究结果可为精确和快速测量盾构隧道管片错台提供参考。

Abstract

Objective: The phenomenon of segment dislocation is prevalent in shield tunnel lining, thereby affecting the structural safety and service performance of tunnels in severe scenarios. Manual measurement of segment dislocation is subjective and time-consuming, while automated methods, such as 3D laser scanners, are not only expensive but also susceptible to environmental conditions. In recent years, advancements in camera technology and deep learning algorithms have significantly propelled the development of computer vision applications in civil engineering monitoring and inspection. Binocular vision technology has been utilized in crack detection and engineering quality evaluation due to its cost-effectiveness and reliable accuracy. This study introduces binocular vision technology to enable accurate measurement of segment dislocation. Methods: The internal and external parameters of consumer-grade binocular cameras are initially obtained through a calibration experiment, followed by capturing binocular images of the segment joints. The accurate disparity information between the left and right images is further calculated using a deep-learning stereomatching algorithm. Finally, a camera attitude correction method is proposed to calculate the segment dislocation accurately. The primary challenge in camera attitude correction is determining key points on the segment surface without evident texture features. Therefore, a series of image processing techniques, such as graying, binarization, dilation, erosion, and target localization, are initially employed on the left photo to automatically identify the location of the segment joint. Then, the parallel thinning algorithm is applied to extract the skeleton of the segment joint (reduce the segment joint width from multi-pixel to single-pixel). The pixel coordinate data along the skeleton are extracted, and the least squares method is used to fit a straight line to the skeleton. Furthermore, the straight lines are shifted and flipped to form latitude and longitude lines, allowing the pixel and camera coordinates of the crossing point (key point) to be calculated in accordance with the triangulation principle. Finally, the segment coordinate system is established using these key points, and the actual segment dislocation is computed. Results: Field tests on the construction site of the shield tunnel were carried out to evaluate the efficiency of the proposed approach. Results were drawn as follows: (1) The calculation results from the vertical shooting of the binocular camera, after camera attitude correction, showed better consistency than the segment dislocation measurement via weld seam gauging. The specific performance demonstrated that the absolute error did not exceed 1.0 mm, and the overall processing time for the segmented image was approximately 10.00 s. (2) In multiple rounds of tests with left-leaning or right-leaning shooting scenarios, when the attitude angles of camera coordinate system relative to the segment coordinate system around its own Xc axis and Yc axis were in the ranges of(180.00±15.00)° and ±20.00°, respectively, the proposed method effectively corrected the calculation results with strong robustness. Conclusions: By combining deep learning algorithms with traditional image processing techniques, binocular vision technology is used to achieve rapid and accurate measurement of segment dislocation. This approach provides a reference for tunnel engineering inspection.

关键词

盾构隧道 / 管片错台 / 双目视觉 / 立体匹配算法 / 相机姿态修正

Key words

shield tunnel / segment dislocation / binocular vision / stereo matching algorithm / camera attitude correction

引用本文

导出引用
关振长, 陈东, 徐铭泽, . 基于双目视觉的管片错台精确测量方法[J]. 清华大学学报(自然科学版). 2025, 65(7): 1359-1367 https://doi.org/10.16511/j.cnki.qhdxxb.2025.26.026
Zhenchang GUAN, Dong CHEN, Mingze XU, et al. Accurate measurement method for segment dislocation using binocular vision[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(7): 1359-1367 https://doi.org/10.16511/j.cnki.qhdxxb.2025.26.026
中图分类号: U456.3   

参考文献

1
葛双双, 高玮, 汪义伟, 等. 我国交通盾构隧道病害、评价及治理研究综述[J]. 土木工程学报, 2023, 56 (1): 119- 128.
GE S S , GAO W , WANG Y W , et al. Review on evaluation and treatment of traffic shield tunnel defects in China[J]. China Civil Engineering Journal, 2023, 56 (1): 119- 128.
2
莫伟樑, 杨雨冰, 林越翔, 等. 基于OFDR技术的盾构隧道管片错台变形测量与计算方法[J]. 现代隧道技术, 2022, 59 (5): 179- 187.
MO W L , YANG Y B , LIN Y X , et al. Measurement and calculation method for shield tunnel segment dislocation deformation based on OFDR technology[J]. Modern Tunnelling Technology, 2022, 59 (5): 179- 187.
3
BIN S, XING W. The monitoring of segments dislocation deformation in shield tunnel based on BOFDA[M]//AGAIBY S, GRASSO P. Engineering Challenges for Sustainable Underground Use. Cham, Switzerland: Springer, 2018: 222-232.
4
刘新根, 陈莹莹, 李明东. 基于斜射式线结构光的隧道错台快速检测技术[J]. 重庆交通大学学报(自然科学版), 2022, 41 (10): 108- 115.
LIU X G , CHEN Y Y , LI M D . Fast detection technology for tunnel slab staggering based on oblique line structured light[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41 (10): 108- 115.
5
赵先琼, 邓凯, 张亚洲, 等. 大直径盾构隧道成型质量巡检方法研究[J]. 工程科学学报, 2024, 46 (2): 365- 375.
ZHAO X Q , DENG K , ZHANG Y Z , et al. Molding quality inspection method for large-diameter shield tunnels[J]. Chinese Journal of Engineering, 2024, 46 (2): 365- 375.
6
YU A B , MEI W S , HAN M L . Deep learning based method of longitudinal dislocation detection for metro shield tunnel segment[J]. Tunnelling and Underground Space Technology, 2021, 113, 103949.
7
DU L M , ZHONG R F , SUN H L , et al. Dislocation detection of shield tunnel based on dense cross-sectional point clouds[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (11): 22227- 22243.
8
方成, 于盛鑫, 李永刚, 等. 基于深度学习的土木工程计算机视觉健康监测[J]. 同济大学学报(自然科学版), 2024, 52 (2): 213- 222.
FANG C , YU S X , LI Y G , et al. Deep learning-based computer vision for health monitoring in civil engineering[J]. Journal of Tongji University (Natural Science), 2024, 52 (2): 213- 222.
9
阳军生, 张宇, 祝志恒, 等. 基于图像三维重建的隧道超欠挖检测方法研究[J]. 中南大学学报(自然科学版), 2020, 51 (3): 714- 723.
YANG J S , ZHANG Y , ZHU Z H , et al. Study on tunnel under-over break detection method based on three-dimensional image reconstruction technology[J]. Journal of Central South University (Science and Technology), 2020, 51 (3): 714- 723.
10
PAN Z H , GUAN J C , YANG X , et al. One-stage 3D profile-based pavement crack detection and quantification[J]. Automation in Construction, 2023, 153, 104946.
11
KIM H , SIM S H , SPENCER B F . Automated concrete crack evaluation using stereo vision with two different focal lengths[J]. Automation in Construction, 2022, 135, 104136.
12
CHENG Y Y , LIN F Z , WANG W G , et al. Vision-based trajectory monitoring for assembly alignment of precast concrete bridge components[J]. Automation in Construction, 2022, 140, 104350.
13
KARDOVSKYI Y , MOON S . Artificial intelligence quality inspection of steel bars installation by integrating mask R-CNN and stereo vision[J]. Automation in Construction, 2021, 130, 103850.
14
HE K M , GKIOXARI G , DOLLÁR P , et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 386- 397.
15
HIRSCHMULLER H . Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30 (2): 328- 341.
16
BOYKOV Y , VEKSLER O , ZABIH R . Fast approximate energy minimization via graph cuts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 (11): 1222- 1239.
17
MVHLMANN K , MAIER D , HESSER J , et al. Calculating dense disparity maps from color stereo images, an efficient implementation[J]. International Journal of Computer Vision, 2002, 47 (1-3): 79- 88.
18
LI J K, WANG P S, XIONG P F, et al. Practical stereo matching via cascaded recurrent network with adaptive correlation[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE, 2022: 16242-16251.
19
杨晓立, 徐玉华, 叶乐佳, 等. 双目立体视觉研究进展与应用[J]. 激光与光电子学进展, 2023, 60 (8): 0811010.
YANG X L , XU Y H , YE L J , et al. Research progress on binocular stereo vision applications[J]. Laser & Optoelectronics Progress, 2023, 60 (8): 0811010.
20
ZHANG Z . A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (11): 1330- 1334.

基金

国家自然科学基金项目(52278399)

版权

版权所有,未经授权,不得转载。
PDF(8352 KB)

Accesses

Citation

Detail

段落导航
相关文章

/