PDF(15506 KB)
剪切流下深海采矿立管涡激振动特性分析
钱浩宇, 金国庆, 邹丽, 于宗冰, 胡健, 国奇
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (8) : 1503-1515.
PDF(15506 KB)
PDF(15506 KB)
剪切流下深海采矿立管涡激振动特性分析
Analysis of vortex-induced vibration characteristics of deep-sea mining riser under shear flow
不同于传统的两端固定的采油立管,深海采矿立管的底部附加中间仓,呈现弱约束形式。在作业过程中易受到复杂的深海剪切流作用,产生涡激振动导致结构损伤。该文采用WKB和尾流振子结合的方法,研究深海采矿立管在剪切流作用下的振动特性,并通过与前人试验结果对比,验证本研究所采用的数值方法的准确性。结果表明:随着剪切参数的增大,立管振动的主导模态增加,底部节点振动位移呈现先减小后稳定的运动规律;随着剪切流最大流速的增加,底部自由端位移呈现先增大后减小的规律;考虑立管振动模态转换时,随着来流速度增加,立管的振幅增加,并会从立管顶部产生新的模态;深海采矿立管比传统采油立管具备更高的自由度,易激发出高阶的模态;考虑立管参数时,发现Young's模量较大的立管会呈现更高阶的模态,随立管长径比参数的增大,振动主导频率增大,响应值降低。
Objective: The deep-sea mining riser plays a crucial role in hydraulic lifting for mineral transportation. Unlike traditional oil production risers, which are fixed at both ends, the deep-sea mining riser features a bottom attachment connected to an intermediate storage chamber, creating a weak constraint boundary condition. During operation, the riser is subjected to the complex shear flow of the deep-sea environment, leading to vortex-induced vibrations and potential structural damage. Consequently, investigating the vortex-induced vibration characteristics of deep-sea mining risers with a free-bottom configuration under varying shear flow conditions holds significant engineering importance. Methods: A novel Wentzel-Kramers-Brillouin (WKB) method is proposed to analyze the static properties of a mining riser attached to an intermediate warehouse To examine the dynamic characteristics of the riser under the influence of the incoming flow, the wake oscillator model, in conjunction with the Runge-Kutta numerical method, is employed to compute the time-varying lift forces exerted on the riser by the external flow field. By integrating the WKB approach with the wake oscillator model, this work investigates the vibration behavior of deep-sea mining risers subjected to shear flow conditions. Results: (1) The analysis of varying shear parameters reveals significant trends in the vibration behavior of risers. As the shear parameters increase, the dominant vibration mode of the riser shifts to higher frequencies, indicating a change in the dynamic response of the riser. Initially, the displacement at the bottom of the riser decreases, likely due to the changes in the shear flow dynamics, before stabilizing at a certain value, suggesting a settling of the system's behavior over time. (2) When the maximum flow velocity of the shear flow increases, the riser's dominant vibration mode also rises, leading to an alteration in the vibration response. Modes adjacent to the dominant mode begin to have a more substantial impact on the overall vibration response. For modes of the same order, the displacement at the bottom of the riser increases initially, followed by a decrease, indicating a complex interaction between modes. However, a more substantial increase in the vibration response occurs when the mode transitions to a new one. (3) The study also highlights a new mode formation with a lower amplitude near the original dominant frequency before the vibration mode transitions. During this conversion, the amplitude of the initial accompanying mode increases, and a new mode emerges from the top of the riser, eventually reaching its peak amplitude. (4) A comparative analysis of deep-sea mining risers and traditional oil production risers shows that mining risers are more prone to exciting higher-order vibration modes. Risers with higher Young's modulus and larger length-to-diameter ratios tend to exhibit higher-order modes, with the dominant vibration mode increasing as the length-to-diameter ratio increases, while the response amplitude decreases. Conclusions: The impact of various shear flow parameters on the vibration response characteristics of deep-sea mining risers is systematically analyzed using numerical methods. Additionally, a comparative study between traditional oil extraction risers and deep-sea mining risers is conducted. This comparison offers valuable theoretical insights that can inform the design and optimization of actual deep-sea mining lifting system engineering.
深海采矿 / 涡激振动 / 剪切流 / 底部响应 / 模态转换
deep-sea mining / vortex-induced vibration / shear flow / bottom response / modal conversion
| 1 |
SHARMA R. Deep-sea mining: Current status and future considerations[M]//SHARMA R. Deep-Sea Mining. Cham: Springer, 2017: 3-21.
|
| 2 |
|
| 3 |
沈义俊, 陈敏芳, 杜燕连, 等. 深海矿物资源开发系统关键力学问题及技术挑战[J]. 力学与实践, 2022, 44 (5): 1005- 1020.
|
| 4 |
|
| 5 |
|
| 6 |
|
| 7 |
|
| 8 |
宋磊建, 付世晓, 于大鹏, 等. 剪切流下发生涡激振动的柔性立管阻力特性研究[J]. 力学学报, 2016, 48 (2): 300- 306.
|
| 9 |
|
| 10 |
徐万海, 马烨璇, 罗浩, 等. 柔性圆柱涡激振动流体力系数识别及其特性[J]. 力学学报, 2017, 49 (4): 818- 827.
|
| 11 |
及春宁, 张妍, 殷彤, 等. 均匀流场中串列阶梯圆柱流致振动试验研究[J]. 振动与冲击, 2023, 42 (14): 278- 286.
|
| 12 |
|
| 13 |
|
| 14 |
|
| 15 |
赵桂欣, 孟帅, 车驰东, 等. 深海立管顺流与横流耦合涡激振动中的内流效应分析[J]. 振动与冲击, 2023, 42 (19): 7- 13.
|
| 16 |
|
| 17 |
邓迪, 付博文, 万德成. 振荡流下细长柔性立管涡激振动数值分析[C]//第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会文集(下册). 长春: 中国力学学会, 2017: 14.
DENG D, FU B W, WAN D C. Numerical analysis of vortex shock vibration of slender flexible risers under oscillation flow[C]// Proceedings of the 14th National Academic Conference on Hydrodynamics and the 28th National Seminar on Hydrodynamics (Volume 2). Changchun, China: Chinese Society of Theoretical and Applied Mechanics, 2017: 14. (in Chinese)
|
| 18 |
王成官, 王嘉松, 田中旭, 等. 海洋隔水管涡激振动的三维数值模拟研究[J]. 水动力学研究与进展A辑, 2011, 26 (4): 437- 443.
|
| 19 |
金国庆, 邹丽, 宗智, 等. 深海采矿系统中悬臂式立管涡激振动分析[J]. 力学学报, 2022, 54 (6): 1741- 1754.
|
| 20 |
|
| 21 |
王帅, 陈正寿, 杜炳鑫, 等. 柔性管异形表面结构对其涡激振动影响的数值研究[J]. 船舶力学, 2024, 28 (3): 450- 464.
|
| 22 |
段金龙, 周济福, 王旭, 等. 剪切流场中含内流立管横向涡激振动特性[J]. 力学学报, 2021, 53 (7): 1876- 1884.
|
| 23 |
韩鹏, 黄桥高, 秦登辉, 等. 基于尾流降阶模型的涡激振动俘能效率优化研究[J]. 清华大学学报(自然科学版), 2024, 64 (8): 1391- 1400.
|
| 24 |
KIM Y C. Nonlinear vibrations of long slender beams[D]. Cambridge: Massachusetts Institute of Technology, 1983.
|
| 25 |
|
| 26 |
|
| 27 |
|
| 28 |
|
| 29 |
HOLMES S, OAKLEY O H JR, CONSTANTINIDES Y. Simulation of riser VIV using fully three dimensional CFD simulations[C]// Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg, Germany: ASME, 2006: 563-570.
|
| 30 |
|
| 31 |
赵光义, 张萌萌, 付世晓, 等. 均匀流作用下并联悬垂双取水管涡激振动载荷特性试验研究[J]. 上海交通大学学报, 2024, 1- 25.
|
| 32 |
王靖, 许玉旺, 任浩杰, 等. 均匀流作用下柔性悬垂管涡激振动响应特性试验研究[J]. 船舶力学, 2024, 28 (9): 1405- 1419.
|
| 33 |
宋吉宁. 立管涡激振动的实验研究与离散涡法数值模拟[D]. 大连: 大连理工大学, 2012.
SONG J N. Experimental investigation and numerical simulation by a discrete vortex method on VIV of marine risers[D]. Dalian: Dalian University of Technology, 2012. (in Chinese)
|
| 34 |
|
/
| 〈 |
|
〉 |