浮式风电基础优化设计技术及其应用

任亚君, 李昇, 施伟, 郝军刚, 朱玲, 李帅

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (8) : 1387-1402.

PDF(3416 KB)
PDF(3416 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (8) : 1387-1402. DOI: 10.16511/j.cnki.qhdxxb.2025.27.020
海洋新能源技术

浮式风电基础优化设计技术及其应用

作者信息 +

Overview of floating offshore wind foundation optimization design technology and its applications

Author information +
文章历史 +

摘要

多学科、多目标优化技术对于提高浮式风电基础设计技术水平、突破产业瓶颈具有重要意义。该文系统梳理了浮式风电基础优化问题的解决思路,并针对优化模型构建的基本要素展开了讨论,总结了现有研究中所采用的优化变量、优化目标、约束条件及其选取的原则; 分析了该领域当前常用的优化算法,讨论了各类算法对于不同类型优化问题的适用性; 回顾了已有研究中所采用的仿真和计算模型,重点讨论了已有研究在提高仿真精度和效率方面开展的尝试; 最后结合案例对多目标优化的流程和方法进行了简要介绍。该文介绍了多学科、多目标优化技术在浮式风电基础设计领域的应用情况及当前面临的主要问题,为相关领域的研究和实践提供了参考。

Abstract

Significance: The global offshore wind power industry is experiencing rapid growth, with floating offshore wind energy technology emerging as a pivotal solution for exploiting wind resources in deep sea areas. The floating foundation, a critical component of floating offshore wind power systems, plays an essential role in ensuring the stability and safe operation of wind turbines. However, the design and analysis of these foundations are fraught with challenges due to their intricate system composition, distinctive dynamic characteristics, and the harsh marine environment they must endure. Traditional design methods, which rely heavily on experience and trial-and-error, are not only inefficient but also fail to integrate multidisciplinary theories, highlighting the need for the more scientific design and optimization tools. Progress: As research delves deeper, technological advancements, and accumulated development experience have led to the application of multidisciplinary optimization design and analysis techniques in the floating wind power sector. The field of floating offshore wind power foundation optimization has seen significant advancements in recent years, with a shift towards more sophisticated multidisciplinary, multi-objective optimization techniques. These techniques have been crucial in addressing the complex interplay between various factors such as structural mechanics, hydrodynamics, aerodynamics, and economic considerations. MDAO techniques, initially from aerospace, enable system-wide optimization by considering interdisciplinary interactions, crucial for managing the complex dynamics between wind turbines and environmental loads. In the realm of optimization algorithms, genetic algorithms, particularly the Non-Dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ), have become prominent due to their ability to handle multiple conflicting objectives simultaneously. These algorithms have been effectively utilized to identify a set of Pareto-optimal solutions, providing a range of options that balance different performance criteria such as cost, structural fatigue, motion response, and tower acceleration. The use of frequency domain analysis has been widespread for early-stage optimization research due to its efficiency in capturing key dynamic characteristics of the floating structures. However, the industry has also recognized the need for time-domain simulations to capture the nonlinear dynamics of the system, especially when precision is paramount. Hybrid methods that combine the benefits of both frequency and time-domain analyses, as well as the application of surrogate model, are being developed to achieve a balance between computational efficiency and accuracy. These innovative techniques offer scientific guidance for the scale planning and optimization design of floating foundations, striving to achieve an optimal balance in cost, performance, and environmental adaptability. This paper provides a comprehensive review of the evolution and application of multi-objective, multidisciplinary optimization methods in the scale optimization of floating offshore wind power foundations. Conclusions: The integration of multi-objective, multi-disciplinary optimization technology is of paramount importance for the optimized design of floating offshore wind power foundations. By merging structural optimization concepts with efficient optimization algorithms and precise simulation tools, it is possible to enhance design efficiency, abbreviate the design cycle, and more scientifically and swiftly obtain floating foundation design that exhibit superior comprehensive performance. This approach not only streamlines the design process but also ensures that the final scheme is more robust and cost-effective, meeting the stringent requirements of the offshore wind power industry. Looking ahead, the field is expected to see further integration of advanced computational methods, machine learning techniques, and high-fidelity simulations to push the boundaries of floating offshore wind power foundation design, leading to more efficient, cost-effective, and durable solutions that can withstand the test of time and the rigors of the marine environment.

关键词

海上风电 / 漂浮式风力机 / 优化 / 浮式风电基础

Key words

offshore wind / floating offshore wind turbine / optimization / floating wind foundati

引用本文

导出引用
任亚君, 李昇, 施伟, . 浮式风电基础优化设计技术及其应用[J]. 清华大学学报(自然科学版). 2025, 65(8): 1387-1402 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.020
Yajun REN, Sheng LI, Wei SHI, et al. Overview of floating offshore wind foundation optimization design technology and its applications[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(8): 1387-1402 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.020
中图分类号: TK83   

参考文献

1
刘功鹏, 杨羽霏, 杨翠兰, 等. 中欧漂浮式海上风电成本比较与变化趋势研究[J]. 水利水电快报, 2024, 45 (7): 70-73, 80.
LIU G P , YANG Y F , YANG C L , et al. Study on cost comparison and variation trend of floating offshore wind power between China and Europe[J]. Express Water Resources & Hydropower Information, 2024, 45 (7): 70-73, 80.
2
何鸿圣, 李春, 王博, 等. 2种海上风力机漂浮式风电场平台动态响应对比[J]. 太阳能学报, 2023, 44 (4): 1- 8.
HE H S , LI C , WANG B , et al. Comparison of dynamic response of two floating wind farm platforms for offshore wind turbines[J]. Acta Energiae Solaris Sinica, 2023, 44 (4): 1- 8.
3
傅强, 刘笑语, 唐品, 等. 基于AHP-CRITIC法的半潜式钻井平台主尺度多准则决策[J]. 中国海洋平台, 2021, 36 (5): 63- 70.
FU Q , LIU X Y , TANG P , et al. Multi-criteria decision-making of principal dimensions of semi-submersible drilling platforms based on AHP-CRITIC method[J]. China Offshore Platform, 2021, 36 (5): 63- 70.
4
郭海宇, 张英豪, 刘颖明, 等. 基于动力学模型和多种群遗传算法的漂浮式风电机组调谐质量阻尼器参数优化[J]. 太阳能学报, 2023, 44 (11): 217- 223.
GUO H Y , ZHANG Y H , LIU Y M , et al. Optimization design of tuned mass damper for floating wind turbines based on dynamic model and multiple population genetic algorithm[J]. Acta Energiae Solaris Sinica, 2023, 44 (11): 217- 223.
5
FERRI G , MARINO E , BORRI C . Optimal dimensions of a semisubmersible floating platform for a 10 MW wind turbine[J]. Energies, 2020, 13 (12): 3092.
6
LUAN C Y , GAO Z , MOAN T . Development and verification of a time-domain approach for determining forces and moments in structural components of floaters with an application to floating wind turbines[J]. Marine Structures, 2017, 51, 87- 109.
7
ZHOU Y M , REN Y J , SHI W , et al. Investigation on a large-scale braceless-TLP floating offshore wind turbine at intermediate water depth[J]. Journal of Marine Science and Engineering, 2022, 10 (2): 302.
8
王宇航, 王文玲, 周绪红, 等. 海上风电机组格构式浮式基础结构优化及响应分析[J]. 中国电力, 2022, 55 (5): 21- 31.
WANG Y H , WANG W L , ZHOU X H , et al. Optimization and response analysis of floating truss foundation for offshore wind turbine[J]. Electric Power, 2022, 55 (5): 21- 31.
9
JANG B S , KIM J D , PARK T Y , et al. FEA based optimization of semi-submersible floater considering buckling and yield strength[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11 (1): 82- 96.
10
MUSKULUS M , SCHAFHIRT S . Design optimization of wind turbine support Structures-a review[J]. Journal of Ocean and Wind Energy, 2014, 1 (1): 12- 22.
11
杜宇, 王凯, 高子予. 海上风电半潜式基础初步选型ParetoOptimal评价[J]. 海洋工程, 2022, 40 (4): 121- 128.
DU Y , WANG K , GAO Z Y . Pareto-optimal evaluation for the preliminary design of semi-submersible floating offshore wind turbine substructure[J]. The Ocean Engineering, 2022, 40 (4): 121- 128.
12
LEIMEISTER M , KOLIOS A . Reliability-based design optimization of a spar-type floating offshore wind turbine support structure[J]. Reliability Engineering & System Safety, 2021, 213, 107666.
13
KARIMI M , HALL M , BUCKHAM B , et al. A multi-objective design optimization approach for floating offshore wind turbine support structures[J]. Journal of Ocean Engineering and Marine Energy, 2017, 3 (1): 69- 87.
14
LAMBE A B , MARTINS J R R A . Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes[J]. Structural and Multidisciplinary Optimization, 2012, 46 (2): 273- 284.
15
姚寿文, 崔红伟. 机械结构优化设计[M]. 2版. 北京: 北京理工大学出版社, 2018.
YAO S W , CUI H W . An introduction to mechanical structural optimization[M]. 2nd ed. Beijing: Beijing Institute Technology Press, 2018.
16
刘浩洋, 户将, 李勇锋, 等. 最优化: 建模、算法与理论[M]. 北京: 高等教育出版社, 2020.
LIU H Y , HU J , LI Y F , et al. Optimization: Modeling, algorithm and theory[M]. Beijing: Higher Education Press, 2020.
17
KOOPMANS T C. An analysis of production as an efficient combination of activities[M]//KOOPMANS T C. Activity Analysis of Production and Allocation. Hoboken: Wiley, 1951: 33-97.
18
程耿东. 工程结构优化设计基础[M]. 大连: 大连理工大学出版社, 2012.
CHENG G D . Introduction to optimum design of engineering structures[M]. Dalian: Dalian University of Technology Press, 2012.
19
HALL M , BUCKHAM B , CRAWFORD C . Hydrody-namics-based floating wind turbine support platform optimization: A basis function approach[J]. Renewable Energy, 2014, 66, 559- 569.
20
姜宜辰, 段英杰, 王传晟, 等. 一种用于海上风电浮式基础主尺度的智能优化方法: CN115577629A[P]. 2023-01-06.
JIANG Y C, DUAN Y J, WANG C S, et al. Intelligent optimization method for main scale of offshore wind power floating foundation: CN115577629A[P]. 2023-01-06. (in Chinese)
21
FARAGGIANA E , SIRIGU M , GHIGO A , et al. An efficient optimisation tool for floating offshore wind support structures[J]. Energy Reports, 2022, 8, 9104- 9118.
22
LEIMEISTER M. Reliability-based optimization of floating wind turbine support structures[D]. Glasgow: University of Strathclyde, 2020.
23
STEINERT A, EHLERS S. Cost assessment for a semi-submersible floating wind turbine with respect to the hydrodynamic response and tower base bending moments using Particle Swarm optimisation[C]//Proceedings of the Twenty-sixth International Ocean and Polar Engineering Conference. Rhodes, Greece: ISOPE, 2016: 419.
24
HALL M, BUCKHAM B, CRAWFORD C. Evolving offshore wind: A genetic algorithm-based support structure optimization framework for floating wind turbines[C]//Proceedings of the MTS/IEEE OCEANS-Bergen. Bergen, Norway: IEEE, 2013: 1-10.
25
FERRI G , MARINO E . Site-specific optimizations of a 10 MW floating offshore wind turbine for the Mediterranean Sea[J]. Renewable Energy, 2023, 202, 921- 941.
26
POLLINI N , PEGALAJAR-JURADO A , BREDMOSE H . Design optimization of a TetraSpar-type floater and tower for the IEA Wind 15 MW reference wind turbine[J]. Marine Structures, 2023, 90, 103437.
27
FYLLING I, BERTHELSEN P A. WINDOPT: An optimization tool for floating support structures for deep water wind turbines[C]//Proceedings of the 30th International Conference on Ocean, Offshore and Arctic Engineering. Rotterdam, The Netherlands: ASME, 2011: 767-776.
28
DOU S G , PEGALAJAR-JURADO A , WANG S F , et al. Optimization of floating wind turbine support structures using frequency-domain analysis and analytical gradients[J]. Journal of Physics: Conference Series, 2020, 1618 (4): 042028.
29
李昌, 王渊博, 蒋明真, 等. 不同风况下半潜漂浮式风力机动力学响应分析[J]. 太阳能学报, 2023, 44 (4): 85- 91.
LI C , WANG Y B , JIANG M Z , et al. Dynamic response analysis of semi-submersible floating wind turbine under different wind conditions[J]. Acta Energiae Solaris Sinica, 2023, 44 (4): 85- 91.
30
BROMMUNDT M , KRAUSE L , MERZ K , et al. Mooring system optimization for floating wind turbines using frequency domain analysis[J]. Energy Procedia, 2012, 24, 289- 296.
31
邱博. 浮式风机基础结构强度分析和优化研究[D]. 辽宁: 大连理工大学, 2023.
QIU B. Strenth analysis and optimization study of floating wind turbine infrastructure[D]. Liaoning: Dalian University of Technology, 2023. (in Chinese)
32
王宇航, 王文玲, 周绪红, 等. 海上风电机组格构式浮式基础结构优化及响应分析[J]. 中国电力, 2022, 55 (5): 21- 31.
WANG Y H , WANG W L , ZHOU X H , et al. Optimization and response analysis of floating truss foundation for offshore wind turbine[J]. Electric Power, 2022, 55 (5): 21- 31.
33
SAEED N , GONG J L , WAN Y J , et al. A novel design of multifunctional offshore floating platform structure based on topology optimization[J]. Engineering Structures, 2024, 306, 117782.
34
CUI Y F , GENG Z Q , ZHU Q X , et al. Review: Multi-objective optimization methods and application in energy saving[J]. Energy, 2017, 125, 681- 704.
35
PATRYNIAK K , COLLU M , CORADDU A . Multidis-ciplinary design analysis and optimisation frameworks for floating offshore wind turbines: State of the art[J]. Ocean Engineering, 2022, 251, 111002.
36
周盛涛. 基于快速动力响应分析的半潜式风机下部结构主尺寸优化[D]. 哈尔滨: 哈尔滨工业大学, 2021.
ZHOU S T. Substructure optimization of semi-submersible floating wind turbines based on quick dynamic analysis[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
37
WANG Y P , LU Q , YAO T C , et al. Global sensitivity analysis of a semi-submersible floating wind turbine using a neural network fitting method[J]. Ocean Engineering, 2023, 285, 115351.
38
ECHEVERRíA F , MALLOR F , SAN MIGUEL U . Global sensitivity analysis of the blade geometry variables on the wind turbine performance[J]. Wind Energy, 2017, 20 (9): 1601- 1616.
39
WILEY W , JONKMAN J , ROBERTSON A , et al. Sensitivity analysis of numerical modeling input parameters on floating offshore wind turbine loads[J]. Wind Energy Science, 2023, 8 (10): 1575- 1595.
40
PILLAI A C , THIES P R , JOHANNING L . Mooring system design optimization using a surrogate assisted multi-objective genetic algorithm[J]. Engineering Optimization, 2019, 51 (8): 1370- 1392.
41
QIU W Z , SONG X Y , SHI K Y , et al. Multi-objective optimization of semi-submersible platforms using particle swam optimization algorithm based on surrogate model[J]. Ocean Engineering, 2019, 178, 388- 409.
42
SCLAVOUNOS P, TRACY C, LEE S. Floating offshore wind turbines: Responses in a seastate pareto optimal designs and economic assessment[C]//Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril, Portugal: ASME, 2008: 31-41.
43
SUGITA T , SUZUKI H . A study on TLP hull sizing by utilizing optimization algorithm[J]. Journal of Marine Science and Technology, 2016, 21 (4): 611- 623.
44
DNV. Coupled analysis of floating wind turbines: DNV-RP-0286[S]. DNV, 2019.
45
ABS. Guidance notes on global performance analysis for floating offshore wind turbine installations: ABS-206[S]. ABS, 2014.
46
陈宇, 祝磊, 吴松熊. 新型漂浮式海上风电基础概念设计和初步动力响应分析[J]. 太阳能学报, 2024, 45 (8): 581- 586.
CHEN Y , ZHU L , WU S X . Conceptual design and preliminary dynamic response analysis of novel floating offshore wind turbine foundation[J]. Acta Energiae Solaris Sinica, 2024, 45 (8): 581- 586.
47
姜宜辰, 于言蔚, 段英杰, 等. 半潜式风电平台主尺度参数智能优化研究[J]. 太阳能学报, 2024, 45 (5): 27- 31.
JIANG Y C , YU Y W , DUAN Y J , et al. Research on intelligent optimization of floating platform main scale parameters fcr semi-submersible wind turbines[J]. Acta Energiae Solaris Sinica, 2024, 45 (5): 27- 31.
48
MATLAB. Optimization toolbox[R]. Natick: The MathWorks, Inc., 2024.
49
中国科学院. 中国科学发展战略: 数学优化[M]. 北京: 科学出版社, 2020.
Chinese Academy of Sciences . China's discipline development strategy: Mathematical optimization[M]. Beijing: Science Press, 2020.
50
European Commission. Qualification of innovative floating substructures for 10MW wind turbines and water depths greater than 50m[R]. Danmarks: European Commission, 2016.
51
OTTER A , MURPHY J , PAKRASHI V , et al. A review of modelling techniques for floating offshore wind turbines[J]. Wind Energy, 2022, 25 (5): 831- 857.
52
FALTINSEN O M . Sea loads on ships and offshore structures[M]. Cambridge: Cambridge University Press, 1993.
53
PEGALAJAR-JURADO A , BORG M , BREDMOSE H . An efficient frequency-domain model for quick load analysis of floating offshore wind turbines[J]. Wind Energy Science, 2018, 3 (2): 693- 712.
54
WAMIT, Inc. WAMIT user manual[R]. Chestnut Hill: WAMIT Inc., 2019.
55
WANG J Z , REN Y J , SHI W , et al. Multi-objective optimization design for a 15 MW semisubmersible floating offshore wind turbine using evolutionary algorithm[J]. Applied Energy, 2025, 377, 124533.
56
ORCINA. OrcaFlex manual[R]. Cumbria: ORCINA Ltd., 2018.
57
QUEIPO N V , HAFTKA R T , SHYY W , et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41 (1): 1- 28.

基金

水电水利规划设计总院科技项目(ZS-KJSD-20230005)
国家自然科学基金面上项目(52071058)

版权

版权所有,未经授权,不得转载。
PDF(3416 KB)

Accesses

Citation

Detail

段落导航
相关文章

/