微重力扩散火焰燃烧实验总结与展望

史京瓒, 温禹哲, 李龙飞, 陈澧宇, 刘有晟

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (9) : 1659-1683.

PDF(29261 KB)
PDF(29261 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (9) : 1659-1683. DOI: 10.16511/j.cnki.qhdxxb.2025.27.027
微重力燃烧

微重力扩散火焰燃烧实验总结与展望

作者信息 +

Review and prospect of microgravity jet flame research

Author information +
文章历史 +

摘要

微重力实验环境可用于去除火焰中的浮力热对流以及浮力驱动的流体不稳定性现象, 对于理解射流火焰中流体与化学反应动力学的交互作用具有重要的指导意义。在化学反应动力学特征时间较长而与流体特征时间发生竞争的问题上, 通过微重力射流火焰结构以及瞬态行为能够揭示火焰在极限条件下的基础物理, 并为理论发展提供验证数据。该文围绕国内外具有代表性的微重力气体射流火焰地基和天基的实验内容, 从射流火焰的微重力实验方法、类比微重力的实验、火焰结构、碳烟生成、辐射热损失与熄灭、极限现象、火焰向湍流转捩、不同物理场对火焰影响等方面进行了回顾。结合中国空间站对于微重力射流火焰系列实验的规划, 为进一步凝练科学问题和难点问题提供参考。

Abstract

Significance: By eliminating buoyancy-driven convection and flow instabilities, microgravity jet flame experiments provide a unique platform to study fluid-chemistry interaction. When the characteristic chemical time scale is sufficiently long and comparable to the fluid dynamic time scale, the structure and transient behavior of microgravity jet flames offer valuable insights into fundamental combustion physics under near-limit conditions. These experimental data are crucial for validating theoretical models. Progress: This paper reviews key microgravity jet flame experiments conducted worldwide, including both ground-based and space-based studies. The topics covered include experimental methods for investigating microgravity jet flames, simulated experiments, flame structure, soot formation, radiative heat loss and extinction, limit phenomena, flame transition into turbulence, effects of varying physical fields, flame-based particle synthesis, and diagnostic techniques for microgravity flames. Despite the progress, many dynamic phenomena associated with microgravity gas flame are out of the scope of this paper. These phenomena often stem from the balance between combustion-generated heat and radiative heat loss or interactions involving diffusion and fluid dynamics. Microgravity provides an ideal environment with controllable flow fields, allowing researchers to study these weak interactions, especially in the context of weak reaction systems operating far from the mixing ratio of equivalent ratios. The study of flame dynamics under microgravity remains an important way to develop corresponding theories. Conclusions and Prospects: Looking ahead, the study of microgravity jet diffusion flames, as reviewed in this paper, identifies several key research areas. From the perspective of near-limit chemical reactions, there is a need for more experiments involving weak flames under microgravity conditions. From the perspective of fluid and combustion transition, understanding the shift from laminar to turbulent flow is critical, as this fluid transition directly affects flame behavior. From the perspective of soot and radiation, the reaction kinetics of soot precursors and the physical processes that follow soot nucleation require more concise and accurate models. Current radiation heat transfer models face challenges in accurately predicting the behavior of macromolecular fuels and their derivatives, especially in high-pressure microgravity flame experiments where experimental data are more scarce. Improved radiation models must account for the unique radiation characteristics of fuel components, even at a high computational cost. Regarding the interaction between sound fields and microgravity flames, further research should explore the relationship between near-limit flames and fluid. Existing studies on microgravity premixed flames have used sound fields as a source of fluid disturbance. For near-limit diffusion flames, it is necessary to essential to evaluate the theoretical and modeling implications of traditional experimental approaches, such as standing waves and fluid instabilities. With ongoing investigations, including microgravity jet flame experiments aboard the China Space Station, this paper can be used to further consolidate scientific and challenging problems in the area.

关键词

微重力 / 落塔 / 空间站 / 射流火焰 / 碳烟 / 火焰转捩

Key words

microgravity / drop tower / space station / jet flame / soot / flame transition

引用本文

导出引用
史京瓒, 温禹哲, 李龙飞, . 微重力扩散火焰燃烧实验总结与展望[J]. 清华大学学报(自然科学版). 2025, 65(9): 1659-1683 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.027
Jingzan SHI, Yuzhe WEN, Longfei LI, et al. Review and prospect of microgravity jet flame research[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(9): 1659-1683 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.027
中图分类号: V19   

参考文献

1
KUMAGAI S , ISODA H . Combustion of fuel droplets in a falling chamber[J]. Symposium (International) on Combustion, 1957, 6 (1): 726- 731.
2
ISODA H , KUMAGAI S . New aspects of droplet combustion[J]. Symposium (International) on Combustion, 1958, 7 (1): 523- 531.
3
THOMPSON F L, BORMAN F, VAN DOLAH R W, et al. Report of apollo 204 review board[R]. Washington: NASA, 1967.
4
FRIEDMAN R. Fire safety practices in the shuttle and the space station freedom[C]//The Second International Microgravity Combustion Workshop. Cleveland, Ohio, USA: NASA, 1993.
5
NASA. Microgravity combustion science: A program overview[C]//NASA Technical Memorandum 101424. Cleveland, Ohio, USA: Lewis Research Center, 1989.
6
SACKSTEDER K R. Fourth international microgravity combustion workshop[C]. Cleveland: NASA, 1997.
7
SACKSTEDER K R. Fifth international microgravity combustion workshop[C]. Cleveland: NASA, 1999.
8
FRIEDMAN R, GOKOGLU S A, URBAN D L. Microgravity Combustion Research: 1999 Program and Results[C]. Cleveland: Glenn Research Center, 1999.
9
LAW C K , FAETH G M . Opportunities and challenges of combustion in microgravity[J]. Progress in Energy and Combustion Science, 1994, 20 (1): 65- 113.
10
JU Y , MARUTA K . Microscale combustion: Technology development and fundamental research[J]. Progress in energy and combustion science, 2011 (6)
11
HOSSAIN S , WICHMAN I S , MILLER F J , et al. Opposed flow flame spread over thermally thick solid fuels: Buoyant flow suppression, stretch rate theory, and the regressive burning regime[J]. Combustion and Flame, 2020, 219, 57- 69.
12
RONNEY P D , WACHMAN H Y . Effect of gravity on laminar premixed gas combustion Ⅰ: Flammability limits and burning velocities[J]. Combustion and Flame, 1985, 62 (2): 107- 119.
13
WANG S F , ZHANG H , JAROSINSKI J , et al. Laminar burning velocities and Markstein lengths of premixed methane/air flames near the lean flammability limit in microgravity[J]. Combustion and Flame, 2010, 157 (4): 667- 675.
14
QIAO L , GU Y X , DAHM W J A , et al. A study of the effects of diluents on near-limit H2-air flames in microgravity at normal and reduced pressures[J]. Combustion and Flame, 2007, 151 (1-2): 196- 208.
15
QIAO L , GU Y X , DAHM W J A , et al. Near-limit laminar burning velocities of microgravity premixed hydrogen flames with chemically-passive fire suppressants[J]. Proceedings of the Combustion Institute, 2007, 31 (2): 2701- 2709.
16
PU Y K , HU J , JAROSINSKI J . Experimentally determined flame properties near flammability limits under gravity and microgravity conditions[J]. Combustion Science and Technology, 2009, 181 (12): 1431- 1442.
17
RONNEY P D . Effect of chemistry and transport properties on near-limit flames at microgravity[J]. Combustion Science and Technology, 1988, 59 (1-3): 123- 141.
18
HAYAKAWA A , GOTO T , MIMOTO R , et al. Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures[J]. Fuel, 2015, 159, 98- 106.
19
RONNEY P D . Understanding combustion processes through microgravity research[J]. Symposium (International) on Combustion, 1998, 27 (2): 2485- 2506.
20
VANDERWEGE B A, BUSH M T, HOCHGREB S, et al. Effect of CF3H and CF3Br on laminar diffusion flames in normal and microgravity[C]// The 3rd International Microgravity Combustion Conference. Cleveland, Ohio, USA: NASA Lewis Research Center, 1995.
21
BURKE S P , SCHUMANN T E W . Diffusion flames[J]. Proceedings of the Symposium on Combustion, 1948, 1-2, 2- 11.
22
LAW C K . Combustion physics[M]. Cambridge: Cambridge University Press, 2006.
23
TURNS S R . An introduction to combustion: Concepts and applications[M]. 3rd ed New York: McGraw-Hill, 2012.
24
COCHRAN T H , MASICA W J . An investigation of gravity effects on laminar gas-jet diffusion flames[J]. Symposium (International) on Combustion, 1971, 13 (1): 821- 829.
25
ROPER F G . The prediction of laminar jet diffusion flame sizes: Part Ⅰ. theoretical model[J]. Combustion and Flame, 1977, 29, 219- 226.
26
EDELMAN R B , BAHADORI M Y . Effects of buoyancy on gas-jet diffusion flames: Experiment and theory[J]. Acta Astronautica, 1986, 13 (11-12): 681- 688.
27
HAGGARD JR J B, COCHRAN T H. Hydrogen and hydrocarbon diffusion flames in a weightless environment[C]. Cleveland: Lewis Research Center, 1973.
28
SUNDERLAND P B , MENDELSON B J , YUAN Z G , et al. Shapes of buoyant and nonbuoyant laminar jet diffusion flames[J]. Combustion and Flame, 1999, 116 (3): 376- 386.
29
ALTENKIRCH R A , EICHHORN R , HSU N N , et al. Characteristics of laminar gas jet diffusion flames under the influence of elevated gravity[J]. Symposium (International) on Combustion, 1977, 16 (1): 1165- 1174.
30
DUROX D , YUAN T , BAILLOT F , et al. Premixed and diffusion flames in a centrifuge[J]. Combustion and Flame, 1995, 102 (4): 501- 511.
31
ARAI M , SATO H , AMAGAI K . Gravity effects on stability and flickering motion of diffusion flames[J]. Combustion and Flame, 1999, 118 (1-2): 293- 300.
32
SUNDERLAND P B , HAYLETT J E , URBAN D L , et al. Lengths of laminar jet diffusion flames under elevated gravity[J]. Combustion and Flame, 2008, 152 (1-2): 60- 68.
33
AKKERMAN V , LAW C K . Coupling of harmonic flow oscillations to combustion instability in premixed segments of triple flames[J]. Combustion and Flame, 2016, 172, 342- 348.
34
VERVISCH L , POINSOT T . Direct numerical simulation of non-premixed turbulent flames[J]. Annual Review of Fluid Mechanics, 1998, 30, 655- 691.
35
CHUNG S H , LEE B J . On the characteristics of laminar lifted flames in a nonpremixed jet[J]. Combustion and Flame, 1991, 86 (1-2): 62- 72.
36
LEE B J , CHUNG S H . Stabilization of lifted tribrachial flames in a laminar nonpremixed jet[J]. Combustion and Flame, 1997, 109 (1-2): 163- 172.
37
KIONI P N , ROGG B , BRAY K N C , et al. Flame spread in laminar mixing layers: The triple flame[J]. Combustion and Flame, 1993, 95 (3): 276- 290.
38
VERVISCH L . Using numerics to help the understanding of non-premixed turbulent flames[J]. Proceedings of the Combustion Institute, 2000, 28 (1): 11- 24.
39
GHOSAL S , VERVISCH L . Stability diagram for lift-off and blowout of a round jet laminar diffusion flame[J]. Combustion and Flame, 2001, 124 (4): 646- 655.
40
PITTS W M . Assessment of theories for the behavior and blowout of lifted turbulent jet diffusion flames[J]. Symposium (International) on Combustion, 1989, 22, 809- 816.
41
LAWN C J . Lifted flames on fuel jets in co-flowing air[J]. Progress in Energy and Combustion Science, 2009, 35 (1): 1- 30.
42
CHUNG S H . Stabilization, propagation and instability of tribrachial triple flames[J]. Proceedings of the Combustion Institute, 2007, 31 (1): 877- 892.
43
BUCKMASTER J . Edge-flames[J]. Progress in Energy and Combustion Science, 2002, 28 (5): 435- 475.
44
AGGARWAL S K . Extinction of laminar partially premixed flames[J]. Progress in Energy and Combustion Science, 2009, 35 (6): 528- 570.
45
CHEN J Y , ECHEKKI T . Numerical study of buoyancy effects on the structure and propagation of triple flames[J]. Combustion Theory and Modelling, 2001, 5 (4): 499- 515.
46
CHEN Y, LIU Y C. On the propagation of partially premixed flame spanning a wide range of gravity levels[C]//AIAA Propulsion and Energy 2020 Forum. AIAA, 2020.
47
BUCKMASTER J , ZHANG Y . Oscillating edge-flames[J]. Combustion Theory and Modelling, 1999, 3 (3): 547- 565.
48
WON S H , KIM J , SHIN M K , et al. Normal and microgravity experiment of oscillating lifted flames in coflow[J]. Proceedings of the Combustion Institute, 2002, 29 (1): 37- 44.
49
LOCK A J , BRIONES A M , QIN X , et al. Liftoff characteristics of partially premixed flames under normal and microgravity conditions[J]. Combustion and Flame, 2005, 143 (3): 159- 173.
50
DENG S L , ZHAO P , MUELLER M E , et al. Flame dynamics in oscillating flows under autoignitive conditions[J]. Combustion and Flame, 2016, 168, 75- 82.
51
JEON D S , HWANG G J , JANG H J , et al. Lift-off characteristics of non-premixed jet flames in laminar/turbulent transition[J]. Combustion and Flame, 2022, 238, 111948.
52
VANQUICKENBORNE L , VAN TIGGELEN A . The stabilization mechanism of lifted diffusion flames[J]. Combustion and Flame, 1966, 10 (1): 59- 69.
53
KALGHATGI G T . Blow-out stability of gaseous jet diffusion flames. Part Ⅰ: In still air[J]. Combustion Science and Technology, 1981, 26 (5-6): 233- 239.
54
BROADWELL J E , DAHM W J A , MUNGAL M G . Blowout of turbulent diffusion flames[J]. Symposium (International) on Combustion, 1985, 20 (1): 303- 310.
55
DAHM W J A , DIBBLE R W . Coflowing turbulent jet diffusion flame blowout[J]. Symposium (International) on Combustion, 1989, 22 (1): 801- 808.
56
DAHM W J A , MAYMAN A G . Blowout limits of turbulent jet diffusion flames for arbitrary source conditions[J]. AIAA Journal, 1990, 28 (7): 1157- 1162.
57
FEIKEMA D , CHEN R H , DRISCOLL J F . Blowout of nonpremixed flames: Maximum coaxial air velocities achievable, with and without swirl[J]. Combustion and Flame, 1991, 86 (4): 347- 358.
58
MUÑIZ L , MUNGAL M G . Instantaneous flame-stabilization velocities in lifted-jet diffusion flames[J]. Combustion and Flame, 1997, 111 (1-2): 16- 31.
59
BROWN C D , WATSON K A , LYONS K M . Studies on lifted jet flames in coflow: The stabilization mechanism in the near-and far-fields[J]. Flow, Turbulence and Combustion, 1999, 62, 249- 273.
60
WANG Q , HU L H , WANG S M , et al. Blowout of non-premixed turbulent jet flames with coflow under microgravity condition[J]. Combustion and Flame, 2019, 210, 315- 323.
61
GLASSMAN I , YETTER R A , GLUMAC N G . Combustion[M]. 5th ed Academic Press, 2014.
62
HEGDE NYMA U , ZHOU L , BAHADORI M Y . The transition to turbulence of microgravity gas jet diffusion flames[J]. Combustion Science and Technology, 1994, 102 (1-6): 95- 113.
63
BAHADORI M Y, SMALL JR J F, HEGDE U G, et al. Characteristics of transitional and turbulent jet diffusion flames in microgravity[C]//The 3rd International Microgravity Combustion Conference. Cleveland, Ohio, USA: NASA Lewis Research Center, 1995.
64
LEE B J , KIM J S , CHUNG S H . Effect of dilution on the liftoff of non-premixed jet flames[J]. Symposium (International) on Combustion, 1994, 25 (1): 1175- 1181.
65
LI D , LIU Y C , ZHANG Y , et al. Stabilization characteristics of transitional and weakly turbulent lifted jet diffusion flames[J]. Combustion Science and Technology, 2024, 196 (17): 4771- 4728.
66
LI D , WEN Y Z , LIU Y C , et al. On the transition modes and mechanisms for laminar to turbulent lifted jet diffusion flames at normal-and micro-gravity[J]. Combustion and Flame, 2024, 260, 113269.
67
DELICHATSIOS M A . Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships[J]. Combustion and Flame, 1993, 92 (4): 349- 364.
68
IDICHERIA C A , BOXX I G , CLEMENS N T . Characteristics of turbulent nonpremixed jet flames under normal-and low-gravity conditions[J]. Combustion and Flame, 2004, 138 (4): 384- 400.
69
BECKER H A , YAMAZAKI S . Entrainment, momentum flux and temperature in vertical free turbulent diffusion flames[J]. Combustion and Flame, 1978, 33, 123- 149.
70
QIN X , PURI I K , AGGARWAL S K , et al. Gravity, radiation, and coflow effects on partially premixed flames[J]. Physics of Fluids, 2004, 16 (8): 2963- 2974.
71
JU Y G , GUO H S , MARUTA K , et al. On the extinction limit and flammability limit of non-adiabatic stretched methane-air premixed flames[J]. Journal of Fluid Mechanics, 1997, 342, 315- 334.
72
ATREYA A , AGRAWAL S . Effect of radiative heat loss on diffusion flames in quiescent microgravity atmosphere[J]. Combustion and Flame, 1998, 115 (3): 372- 382.
73
BAHADORI M Y , STOCKER D P , ZHOU L , et al. Radiative loss from non-premixed flames in reduced-gravity environments[J]. Combustion Science and Technology, 2001, 167 (1): 169- 186.
74
LOCK A , AGGARWAL S K , PURI I K , et al. Suppression of fuel and air stream diluted methane-air partially premixed flames in normal and microgravity[J]. Fire Safety Journal, 2008, 43 (1): 24- 35.
75
TAKAHASHI F , KATTA V R , LINTERIS G T , et al. Cup-burner flame structure and extinguishment by CF3Br and C2HF5 in microgravity[J]. Proceedings of the Combustion Institute, 2013, 34 (2): 2707- 2717.
76
TAKAHASHI F , LINTERIS G T , KATTA V R . Extinguishment of methane diffusion flames by inert gases in coflow air and oxygen-enriched microgravity environments[J]. Proceedings of the Combustion Institute, 2011, 33 (2): 2531- 2538.
77
ZHANG D , FANG J , GUAN J F , et al. Laminar jet methane/air diffusion flame shapes and radiation of low air velocity coflow in microgravity[J]. Fuel, 2014, 130, 25- 33.
78
KONG W J , LIU F S . Numerical study of the effects of gravity on soot formation in laminar coflow methane/air diffusion flames under different air stream velocities[J]. Combustion Theory and Modelling, 2009, 13 (6): 993- 1023.
79
LIU F S , GUO H S , SMALLWOOD G J , et al. Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 73 (2-5): 409- 421.
80
LIU F S , GUO H S , SMALLWOOD G J . Effects of radiation model on the modeling of a laminar coflow methane/air diffusion flame[J]. Combustion and Flame, 2004, 138 (1-2): 136- 154.
81
LIU F S , SMALLWOOD G J , KONG W J . The importance of thermal radiation transfer in laminar diffusion flames at normal and microgravity[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112 (7): 1241- 1249.
82
LIU F S , CONSALVI J L , COELHO P J , et al. The impact of radiative heat transfer in combustion processes and its modeling-with a focus on turbulent flames[J]. Fuel, 2020, 281, 118555.
83
LIU F S , CONSALVI J L , NMIRA F . The importance of accurately modelling soot and radiation coupling in laminar and laboratory-scale turbulent diffusion flames[J]. Combustion and Flame, 2023, 258, 112573.
84
GOMEZ A , LITTMAN M G , GLASSMAN I . Comparative study of soot formation on the centerline of axisymmetric laminar diffusion flames: Fuel and temperature effects[J]. Combustion and Flame, 1987, 70 (2): 225- 241.
85
GLASSMAN I . Soot formation in combustion processes[J]. Symposium (International) on Combustion, 1989, 22 (1): 295- 311.
86
GLASSMAN I . Sooting laminar diffusion flames: Effect of dilution, additives, pressure, and microgravity[J]. Symposium (International) on Combustion, 1998, 27 (1): 1589- 1596.
87
SCHALLA R L , MCDONALD G E . Mechanism of smoke formation in diffusion flames[J]. Symposium (International) on Combustion, 1955, 5 (1): 316- 324.
88
SUNDERLAND P B , MORTAZAVI S , FAETH G M , et al. Laminar smoke points of nonbuoyant jet diffusion flames[J]. Combustion and Flame, 1994, 96 (1-2): 97- 103.
89
HAYNES B S , WAGNER H G . Soot formation[J]. Progress in Energy and Combustion Science, 1981, 7 (4): 229- 273.
90
FUJITA O , ITO K . Observation of soot agglomeration process with aid of thermophoretic force in a microgravity jet diffusion flame[J]. Experimental Thermal and Fluid Science, 2002, 26 (2-4): 305- 311.
91
ITO H , FUJITA O , ITO K . Agglomeration of soot particles in diffusion flames under microgravity[J]. Combustion and Flame, 1994, 99 (2): 363- 370.
92
SIVATHANU Y R , FAETH G M . Soot volume fractions in the overfire region of turbulent diffusion flames[J]. Combustion and Flame, 1990, 81 (2): 133- 149.
93
MORTAZAVI S, SUNDERLAND P B, JURNG J, et al. Structure of soot-containing laminar jet diffusion flames[C]//31st Aerospace Sciences Meeting & Exhibit. Reno, NV, USA: AIAA, 1993.
94
MEGARIDIS C M , GRIFFIN D W , KONSUR B . Soot-field structure in laminar soot-emitting microgravity nonpremixed flames[J]. Symposium (International) on Combustion, 1996, 26 (1): 1291- 1299.
95
GREENBERG P S , KU J C . Soot volume fraction maps for normal and reduced gravity laminar acetylene jet diffusion flames[J]. Combustion and Flame, 1997, 108 (1-2): 227- 230.
96
WALSH K T , FIELDING J , SMOOKE M D , et al. Experimental and computational study of temperature, species, and soot in buoyant and non-buoyant coflow laminar diffusion flames[J]. Proceedings of the Combustion Institute, 2000, 28 (2): 1973- 1979.
97
JEON B H , CHOI J H . Effect of buoyancy on soot formation in gas-jet diffusion flame[J]. Journal of Mechanical Science and Technology, 2010, 24 (7): 1537- 1543.
98
REIMANN J , WILL S . Optical diagnostics on sooting laminar diffusion flames in microgravity[J]. Microgravity-Science and Technology, 2005, 16, 333- 337.
99
REIMANN J , KUHLMANN S A , WILL S . Investigations on soot formation in heptane jet diffusion flames by optical techniques[J]. Microgravity Science and Technology, 2010, 22, 499- 505.
100
DIEZ F J , AALBURG C , SUNDERLAND P B , et al. Soot properties of laminar jet diffusion flames in microgravity[J]. Combustion and Flame, 2009, 156 (8): 1514- 1524.
101
HAWERSAAT R, URBAN D, SUNDERLAND P, et al. Smoke point in Co-flow experiment (SPICE)[J/OL]. (2023-12-18)[2024-04-30]. https://www1.grc.nasa.gov/space/iss-research/msg/spice/.
102
HAWERSAAT R, LONG M, SMOOKE M, et al. Structure & liftoff in combustion experiment (SLICE)[J/OL]. (2023-06-13)[2024-04-30]. https://www1.grc.nasa.gov/space/iss-research/msg/slice/.
103
GIASSI D , CAO S , BENNETT B A V , et al. Analysis of CH* concentration and flame heat release rate in laminar coflow diffusion flames under microgravity and normal gravity[J]. Combustion and Flame, 2016, 167, 198- 206.
104
MA B , CAO S , GIASSI D , et al. An experimental and computational study of soot formation in a coflow jet flame under microgravity and normal gravity[J]. Proceedings of the Combustion Institute, 2015, 35 (1): 839- 846.
105
DOBBINS R R , TINJERO J , SQUEO J , et al. A combined experimental and computational study of soot formation in normal and microgravity conditions[J]. Combustion Science and Technology, 2023, 195 (15): 3882- 3907.
106
CAO S , MA B , GIASSI D , et al. Effects of pressure and fuel dilution on coflow laminar methane-air diffusion flames: A computational and experimental study[J]. Combustion Theory and Modelling, 2018, 22 (2): 316- 337.
107
VESHKINI A , DWORKIN S B . A computational study of soot formation and flame structure of coflow laminar methane/air diffusion flames under microgravity and normal gravity[J]. Combustion Theory and Modelling, 2017, 21 (5): 864- 878.
108
KEMPEMA N J , DOBBINS R R , LONG M B , et al. Constrained-temperature solutions of coflow laminar diffusion flames[J]. Proceedings of the Combustion Institute, 2021, 38 (2): 1905- 1912.
109
O'CONNOR J , ACHARYA V , LIEUWEN T . Transverse combustion instabilities: Acoustic, fluid mechanic, and flame processes[J]. Progress in Energy and Combustion Science, 2015, 49, 1- 39.
110
POLIFKE W . Modeling and analysis of premixed flame dynamics by means of distributed time delays[J]. Progress in Energy and Combustion Science, 2020, 79, 100845.
111
SILVA C F . Intrinsic thermoacoustic instabilities[J]. Progress in Energy and Combustion Science, 2023, 95, 101065.
112
RAUN R L , BECKSTEAD M W , FINLINSON J C , et al. A review of Rijke tubes, Rijke burners and related devices[J]. Progress in Energy and Combustion Science, 1993, 19 (4): 313- 364.
113
BEISNER E , WIGGINS N D , YUE K B , et al. Acoustic flame suppression mechanics in a microgravity environment[J]. Microgravity Science and Technology, 2015, 27, 141- 144.
114
ZONG R W , KANG R X , LIU C , et al. Analysis of flame extinguishment and height in low frequency acoustically excited methane jet diffusion flame[J]. Microgravity Science and Technology, 2018, 30, 237- 242.
115
XIONG C Y , LIU Y H , FAN H R , et al. Fluctuation and extinction of laminar diffusion flame induced by external acoustic wave and source[J]. Scientific Reports, 2021, 11 (1): 14402.
116
SUGIU N , MOTOHASHI K , SAITO M , et al. Response of triple flame to acoustic oscillations[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2016, 14 (30): 7- 12.
117
GOODINGS J M , BOHME D K , NG C W . Detailed ion chemistry in methane oxygen flames. Ⅰ. positive ions[J]. Combustion and Flame, 1979, 36, 27- 43.
118
GOODINGS J M , BOHME D K , NG C W . Detailed ion chemistry in methane oxygen flames. Ⅱ. negative ions[J]. Combustion and Flame, 1979, 36, 45- 62.
119
PARK D G , CHUNG S H , CHA M S . Bidirectional ionic wind in nonpremixed counterflow flames with DC electric fields[J]. Combustion and Flame, 2016, 168, 138- 146.
120
CARLETON F , DUNN-RANKIN D , WEINBERG F . The optics of small diffusion flames in microgravity[J]. Symposium (International) on Combustion, 1998, 27 (2): 2567- 2572.
121
STRAYER B A , POSNER J D , DUNN-RANKIN D , et al. Simulating microgravity in small diffusion flames by using electric fields to counterbalance natural convection[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 458 (2021): 1151- 1166.
122
KARNANI S , DUNN-RANKIN D , TAKAHASHI F , et al. Simulating gravity in microgravity combustion using electric fields[J]. Combustion Science and Technology, 2012, 184 (10-11): 1891- 1902.
123
CHIEN Y C , STOCKER D P , HEGDE U G , et al. Electric-field effects on methane coflow flames aboard the international space station (ISS): ACME E-FIELD flames[J]. Combustion and Flame, 2022, 246, 143.
124
FJITA O , ITO K , CHIDA T , et al. Determination of magnetic field effects on a jet diffusion flame in a microgravity environment[J]. Symposium (International) on Combustion, 1998, 27 (2): 2573- 2578.
125
WAKAYAMA N I , ITO H , KURODA Y , et al. Magnetic support of combustion in diffusion flames under microgravity[J]. Combustion and Flame, 1996, 107 (1-2): 187-188, 189-192.
126
WAKAYAMA N I , SUGIE M . Magnetic promotion of combustion in diffusion flames[J]. Physica B: Condensed Matter, 1996, 216 (3-4): 403- 405.

基金

国家重点研发计划项目(2021YFA0716201)
中国载人航天工程办公室空间应用系统科学实验项目

版权

版权所有,未经授权,不得转载。
PDF(29261 KB)

Accesses

Citation

Detail

段落导航
相关文章

/