海上风电场单桩溜桩的影响因素及判别方法

沈侃敏, 张杰, 沈振义, 李飒

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (8) : 1403-1411.

PDF(3469 KB)
PDF(3469 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (8) : 1403-1411. DOI: 10.16511/j.cnki.qhdxxb.2025.27.031
海洋新能源技术

海上风电场单桩溜桩的影响因素及判别方法

作者信息 +

Study of the influencing factors and identification of pile running in monopile for offshore wind farms

Author information +
文章历史 +

摘要

海上风电单桩基础的桩长多为50~100 m,比海洋平台桩基的略短,但桩径的大幅增加易导致(超)大桩重的产生。在(超)大桩重的桩基进行沉桩过程中,有必要对其是否发生溜桩进行判别。该研究基于海上风电场单桩基础的实测数据,对风电单桩发生溜桩的影响因素和判别方法进行了探讨。结果表明,大直径单桩在砂-黏交替出现场地容易发生溜桩,当砂层厚度不大于0.2 D (D为桩基直径),黏土层厚度不小于0.4D时,溜桩风险最大。根据以空腔膨胀理论为基础得到的不同形状物体在土体中运动速度的计算公式,采用现场27根桩的实测数据,得到了计算桩基贯入速度所需要的形状参数; 进一步提出了计算桩基贯入速度的计算流程,获得桩基贯入过程中速度随深度的变化,并据此对溜桩范围进行判别。验证结果表明,该研究构建的判别方法所得结果和工程现场实际测试结果吻合度较高。该研究可为海上风电单桩溜桩判别提供科学的依据。

Abstract

Objective: Offshore wind turbines (OWTs) are supported by driven open-ended steel piles. At present, monopiles are the most common type of foundation adopted for OWTs because of the simplicity of their design, fabrication, and installation. Compared with the piles used in offshore platforms, monopiles are shorter but heavier. Due to these characteristics, pile drivability analysis needs to be conducted to evaluate whether pile running will occur during pile driving. Methods: Based on the measured data from monopiles of offshore wind farms on site, the influencing factors of pile running are investigated, and the identification methods for pile running are analyzed. This study found that pile running easily occurs when monopiles penetrate areas where sand overlies clay. The thicknesses of the overlying sand layer and underlying clay layer will have an impact on whether pile running occurs. Results: In this study, when the thickness of the sand layer is 0.1D-0.2D (where D is the pile diameter) and the thickness of the clay layer exceeds 0.4D, the risk of pile running is the highest. When pile running occurs, because of the sudden change in bearing capacity, the penetration velocity in the pile running stage will first increase, then gradually decrease, and eventually return to 0. Therefore, the change in penetration velocity can fully demonstrate the process of pile running, and the length of the pile running can be judged based on this. A process for calculating the penetration velocity of the pile during pile driving has been proposed. Based on the process of calculating the penetration velocity, the penetration velocity was calculated. When calculating the penetration velocity during pile driving, the dynamic effect needs to be considered. The method based on the two-dimensional dynamic cavity expansion model was used to calculate the dynamic resistance. The shape parameter N required for calculating the dynamic resistance was obtained using the measured data from 27 monopiles on 3 sites. For a monopile with a diameter of 6.5-9.0 m, the shape parameter N=1.2 is appropriate. Conclusions: A method to determine the length of the pile running, which considers the static and dynamic resistance simultaneously, has been presented. The measurement results on site show that the pile running length obtained by the velocity discrimination method is consistent with that in practice. The identification method for pile running proposed in this study provides a reference for the identification of pile running of similar OWT monopiles in the future.

关键词

海上风电 / 单桩 / 溜桩 / 土阻力 / 贯入速度

Key words

offshore wind power / monopile / pile running / soil resistance to driving / penetration velocity

引用本文

导出引用
沈侃敏, 张杰, 沈振义, . 海上风电场单桩溜桩的影响因素及判别方法[J]. 清华大学学报(自然科学版). 2025, 65(8): 1403-1411 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.031
Kanmin SHEN, Jie ZHANG, Zhenyi SHEN, et al. Study of the influencing factors and identification of pile running in monopile for offshore wind farms[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(8): 1403-1411 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.031
中图分类号: TU443   

参考文献

1
WU X N , HU Y , LI Y , et al. Foundations of offshore wind turbines: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 104, 379- 393.
2
OH K Y , NAM W , RYU M S , et al. A review of foundations of offshore wind energy convertors: Current status and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 88, 16- 36.
3
NEGRO V , LÓPEZ-GUTIÉRREZ J S , ESTEBAN M D , et al. Monopiles in offshore wind: Preliminary estimate of main dimensions[J]. Ocean Engineering, 2017, 133, 253- 261.
4
ALM T, HAMRE L. Soil model for pile driveability predictions based on CPT interpretations[C]//15th International Conference on Soil Mechanics and Foundation Engineering. Lisse, Netherlands: A. A. BALKEMA, 2001: 1297-1302.
5
LEHANE B M, LIU Z Q, BITTAR E, et al. A new 'unified' CPT-based axial pile capacity design method for driven piles in sand[C]//Proceedings Fourth International Symposium on Frontiers in Offshore Geotechnics. Texus, USA: Deep Foundations Institute, 2020: 462-477.
6
龚敏, 朱涛, 陈守祥, 等. 超长期循环荷载作用下海上风机大直径单桩动力特性演变规律研究[J]. 振动与冲击, 2023, 42 (1): 259- 266.
GONG M , ZHU T , CHEN S X , et al. Evolution of dynamic characteristics of large diameter monopile of offshore wind turbine under ultra-long term cyclic load[J]. Journal of Vibration and Shock, 2023, 42 (1): 259- 266.
7
ZHANG J , SHEN KM , WANG B , et al. , Study of a Method for Drivability of Monopile in Complex Stratified Soil[J]. Journal of Marine Science and Engineering, 2023, 11 (3): 603.
8
赵欢. 大直径超长钢管桩溜桩行为研究[D]. 天津: 天津大学, 2019.
ZHAO H. Study on the pile running behavior of large diameter and super long steel pipe piles[D]. Tianjn: Tianjin University, 2019. (in Chinese)
9
YAN S W , JIA Z L , LIU W B , et al. Reserch on the large diameter and supper long pile running under self-weight in the ocean engineering[J]. Journal of Coastal Research, 2015, 73 (sp1): 809- 814.
10
SUN L Q , WANG YD , GUO W , et al. Case study on pile running during the driving process of large-diameter pipe piles[J]. Marine Georesources & Geotechnology, 2018, 36 (6): 709- 721.
11
DOVER A R, DAVIDSON J. Large diameter steel pipe piles running under self weight in soft clay: Predicted vs. observed behavior—richmond san-rafael bridge seismic retrofit[C]//The 11th TriennialInternational Conference: Ports 2007: 30 Years of Sharing Ideas: 1977-2007. San Diego, USA: ASCE Press, 2007: 1-10.
12
SHONBERG A, ANUSIC I, HARTE M S, et al. Comparison of self weight penetration prediction methods for large diameter monopiles in North Sea soils[C]//Offshore Technology Conference. Houston, USA: SPE, 2017: 27763.
13
闫澍旺, 贾沼霖, 孙立强, 等. 大直径超长钢管桩溜桩机理及计算方法研究[J]. 工程力学, 2015, 32 (9): 158- 164.
YAN S W , JIA Z L , SUN L Q , et al. Mechanics and calculation of pile-run for long and large diameter piles[J]. Engineering Mechanics, 2015, 32 (9): 158- 164.
14
贾沼霖, 练继建, 陈昆, 等. 大直径超长桩溜桩桩端阻力的计算方法[J]. 岩土工程学报, 2017, 39 (S2): 240- 243.
JIA Z L , LIAN J J , CHEN K , et al. Computational method for end resistance of large-diameter ultra-long piles during pile sliding[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (S2): 240- 243.
15
李飒, 吴兴州, 王耀存, 等. 打桩过程中考虑溜桩影响的土阻力研究[J]. 岩土工程学报, 2015, 37 (6): 1150- 1157.
LI S , WU X Z , WANG Y C , et al. Soil resistance to driving considering effect of pile running on pile installation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (6): 1150- 1157.
16
SUN L Q , SHI J , ZGANG Y R , et al. Analytical method for predicting pile running during driving[J]. Applied Ocean Research, 2022, 125, 103234.
17
JAMIOLKOWSKI M, GHIONNA V N, LANCELLOTTA R, et al. New correlations of penetration tests for design practice [C]//International Symposium on Penetration Testing; ISOPT-1. 1. Rotterdam, Netherlands: A. A. Balkema, 1988: 263-296.
18
PECK R B , HANSON W E , THORNBURN T H . Foundation engineering[M]. New York: Wiley, 1953.
19
American Petroleum Institute. API RP 2GEO: Geotechnical and foundation design considerations[S]. Washington, DC, USA: API, 2021.
20
DAVISON J, CASTELLETTI M, TORRES I, et al. The evaluation of current pile driving prediction methods for driven monopile foundations in London clay[C]//Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, Frence: Presses des Ponts, 2013: 1-6.
21
BISHOP R F , HILL R , MOTT N F . The theory of indentation and hardness tests[J]. Proceedings of the Physical Society, 1945, 57 (3): 147- 159.
22
TATE A . Further results in the theory of long rod penetration[J]. Journal of the Mechanics and Physics of Solids, 1969, 17 (3): 141- 150.
23
FELDGUN V R , YANKELEVSKY D Z , KARINSKI Y S . A new simplified analytical model for soil penetration analysis of rigid projectiles using the Riemann problem solution[J]. International Journal of Impact Engineering, 2017, 101, 49- 65.
24
刘均伟, 张先锋, 刘闯, 等. 空腔膨胀理论靶体阻力模型及其应用研究进展[J]. 爆炸与冲击, 2021, 41 (10): 101101.
LIU J W , ZHANG X F , LIU C , et al. Research progress of target resistance model of cavity expansion theory and its application[J]. Explosion and Shock Waves, 2021, 41 (10): 101101.
25
WOO H J. Cavity expansion analysis of non-circular cross-sectional penetration problems[D]. Austin: The University of Texas at Austin, 1997.
26
ADS A , BLESS S , ISKANDER M . Shape effects on penetration of dynamically installed anchors in a transparent marine clay surrogate[J]. Acta Geotechnica, 2023, 18 (6): 3043- 3059.
27
CHIAN S C , TAN B C V , SARMA A . Projectile penetration into sand: Relative density of sand and projectile nose shape and mass[J]. International Journal of Impact Engineering, 2017, 103, 29- 37.
28
AHMED M , ALQADHI S , MALLICK J , et al. Advances in projectile penetration mechanism in soil media[J]. Applied Sciences, 2020, 10 (19): 6810.

基金

国家自然科学基金面上项目(52101334)

版权

版权所有,未经授权,不得转载。
PDF(3469 KB)

Accesses

Citation

Detail

段落导航
相关文章

/