旋流预混火焰仿真主控模型参数分析及优化

陈璠, 张曼玉, 杨志鹏, 朱旭, 莫毅, 周华, 任祝寅

清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (10) : 2000-2016.

PDF(15116 KB)
PDF(15116 KB)
清华大学学报(自然科学版) ›› 2025, Vol. 65 ›› Issue (10) : 2000-2016. DOI: 10.16511/j.cnki.qhdxxb.2025.27.040
航空航天与工程力学

旋流预混火焰仿真主控模型参数分析及优化

作者信息 +

Analysis and optimization of key model parameters in turbulent swirling premixed flame simulations

Author information +
文章历史 +

摘要

目前燃烧仿真软件中的湍流燃烧模型能够对多种典型燃烧室开展仿真计算,但其预测精度受模型参数影响较大,工程实践中往往需要进行多次的模型参数的调整才能实现仿真结果的优化。如何在湍流燃烧多模型耦合计算中准确量化各模型参数对仿真结果的影响,进而实现对模型参数的校准优化,成为燃烧仿真软件研制面临的瓶颈问题。基于此,该研究选取具有预混燃烧典型特征的非受限强旋流贫油预混火焰,基于活性子空间方法对现有湍流燃烧模型的仿真误差进行了分析,结果表明火焰加厚因子最大值是该旋流预混火焰温度和轴向速度误差的主控模型参数。进而根据活性子空间方法的降维结果,构建了多维参数输入空间的低维响应面,并提出一套基于活性子空间方法的多模型参数优化流程,基于该优化流程对湍流燃烧模型关键参数进行校准,使用简单遗传算法单独对温度或速度进行优化时,关键截面温度平均误差和轴向速度平均误差分别降低7.58%、42.60%;采用带精英策略的非支配排序遗传算法同时对温度和速度进行优化时,关键截面温度平均误差和轴向速度平均误差同时降低1.08%和2.96%,这实现了预混火焰温度和轴向速度仿真精度的大幅提升。

Abstract

Objective: Turbulent combustion models embedded in current combustion simulation software have successfully predicted performance across various combustor configurations. However, their accuracy is highly sensitive to model parameters, which must be iteratively adjusted and optimized in engineering practice to accommodate diverse combustor geometries, fuel types, and operating conditions. Thus, analyzing the main control mechanisms of turbulent combustion and establishing effective model parameter calibration and optimization processes are crucial for enhancing the prediction accuracy and reliability of combustion simulation software. Methods: This study selects an unconfined, strongly swirling lean premixed flame as the research object. It uses the active subspace method to analyze the effects of the key model parameters of the delayed detached eddy simulation turbulence model and dynamically thickened flame combustion model on the simulation errors of flame temperature and axial velocity. By identifying the high-dimensional mapping direction with the maximum gradient and retaining the main influencing directions in the parameter space, this method reduces dimensionality, based on which a low-dimensional response surface can be constructed for the multidimensional parameter input space. Furthermore, this study proposes a multimodel parameter optimization method that combines the active subspace method, a simple genetic algorithm, and the nondominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). Specifically, in the analysis of the main control mechanisms, the active subspace method is applied to the TECFLAM flame with the typical swirling premixed characteristics of combustors. Simulation calculations are performed to obtain parameters such as the turbulent dissipation coefficient and maximum flame thickening factor under different values. This helps in identifying the main control mechanisms by which these parameters affect simulation accuracy for the target variables like flame temperature and axial velocity, thereby revealing the parameter optimization direction for improving the accuracy of turbulent combustion simulations. Moreover, the proposed multimodel parameter optimization method for combustor simulations is used to optimize seven key turbulent combustion model parameters of the delayed detached eddy simulation turbulence model and dynamically thickened flame combustion model, including the turbulent dissipation coefficient and maximum flame thickening factor for a typical swirling premixed flame simulation case. Results: Results show that (1) the maximum flame thickening factor is the primary model parameter controlling the temperature and axial velocity errors of swirling premixed flame. (2) Calibrating the key parameters of the turbulent combustion model via the optimization process reduces the average temperature error at critical sections by 7.58% and the average axial velocity error by 42.60% when using the simple genetic algorithm alone. When using elitist NSGA-Ⅱ, the average temperature error at critical sections decreases further by 1.08%, and the average axial velocity error reduces by 2.96%. (3) The optimized model parameters significantly enhance simulation accuracy for typical swirling premixed flames, verifying the effectiveness of the proposed method. Conclusions: The proposed multimodel parameter optimization method effectively improves simulation accuracy for typical swirling premixed flames. It is applicable not only to resolve the parameter optimization problems of turbulent combustion models with the swirling premixed flame characteristics but also offers a new approach for circumventing multiparameter optimization issues in more complex two-phase simulations of combustors, including atomization, evaporation, turbulence, and combustion models.

关键词

湍流燃烧仿真 / 旋流预混火焰 / 活性子空间方法 / 模型参数优化 / 低维响应面

Key words

turbulent combustion simulation / swirling lean premixed flame / active subspace method / parameter optimization / low-dimensional response surface

引用本文

导出引用
陈璠, 张曼玉, 杨志鹏, . 旋流预混火焰仿真主控模型参数分析及优化[J]. 清华大学学报(自然科学版). 2025, 65(10): 2000-2016 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.040
Fan CHEN, Manyu ZHANG, Zhipeng YANG, et al. Analysis and optimization of key model parameters in turbulent swirling premixed flame simulations[J]. Journal of Tsinghua University(Science and Technology). 2025, 65(10): 2000-2016 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.040
中图分类号: V231.2   

参考文献

1
曹建国. 航空发动机仿真技术研究现状、挑战和展望[J]. 推进技术, 2018, 39 (5): 961- 970.
CAO J G . Status, challenges and perspectives of aero-engine simulation technology[J]. Journal of Propulsion Technology, 2018, 39 (5): 961- 970.
2
静大亮, 王珂, 陈曦, 等. 燃烧室数值仿真研究现状与发展趋势[J]. 航空动力, 2018 (1): 44- 47.
JING D L , WANG K , CHEN X , et al. The progress on numerical simulation of combustion chamber[J]. Aerospace Power, 2018 (1): 44- 47.
3
樊雪松, 陈阳, 吴德权, 等. 反应机理对air/H2燃烧系统多场耦合仿真的适用性[J]. 航空动力学报, 2018, 33 (10): 2392- 2403.
FAN X S , CHEN Y , WU D Q , et al. Applicability of reaction mechanisms to multi-field coupling simulation of air/H2 combustion system[J]. Journal of Aerospace Power, 2018, 33 (10): 2392- 2403.
4
MUELLER M E , RAMAN V . Model form uncertainty quantification in turbulent combustion simulations: Peer models[J]. Combustion and Flame, 2018, 187, 137- 146.
5
王娜娜, 解青, 苏星宇, 等. 湍流燃烧机理和调控的活性子空间分析方法[J]. 航空学报, 2021, 42 (12): 25228.
WANG N N , XIE Q , SU X Y , et al. Active subspace methods for analysis and optimization of turbulent combustion[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (12): 25228.
6
SLOTNICK J P, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences[R]. Washington, D. C. : NASA, 2014.
7
REN Z Y , POPE S B . Sensitivity calculations in PDF modelling of turbulent flames[J]. Proceedings of the Combustion Institute, 2009, 32 (1): 1629- 1637.
8
DUCHAINE F , BOUDY F , DUROX D , et al. Sensitivity analysis of transfer functions of laminar flames[J]. Combustion and Flame, 2011, 158 (12): 2384- 2394.
9
KHALIL M , LACAZE G , OEFELEIN J C , et al. Uncertainty quantification in LES of a turbulent bluff-body stabilized flame[J]. Proceedings of the Combustion Institute, 2015, 35 (2): 1147- 1156.
10
MISHRA A A , IACCARINO G . Uncertainty estimation for Reynolds-averaged Navier-stokes predictions of high-speed aircraft nozzle jets[J]. AIAA Journal, 2017, 55 (11): 3999- 4004.
11
HUAN X , SAFTA C , SARGSYAN K , et al. Global sensitivity analysis and estimation of model error, toward uncertainty quantification in scramjet computations[J]. AIAA Journal, 2018, 56 (3): 1170- 1184.
12
CONSTANTINE P G , DOW E , WANG Q Q . Active subspace methods in theory and practice: Applications to kriging surfaces[J]. SIAM Journal on Scientific Computing, 2014, 36 (4): A1500- A1524.
13
JI W Q , WANG J X , ZAHM O , et al. Shared low-dimensional subspaces for propagating kinetic uncertainty to multiple outputs[J]. Combustion and Flame, 2018, 190, 146- 157.
14
WANG N N , XIE Q , SU X Y , et al. Quantification of modeling uncertainties in turbulent flames through successive dimension reduction[J]. Combustion and Flame, 2020, 222, 476- 489.
15
WEI J L , AN J , ZHANG Q , et al. Exploiting active subspaces for geometric optimization of cavity-stabilized supersonic flames[J]. AIAA Journal, 2023, 61 (8): 3353- 3364.
16
LIU Q K , MO Z Y , ZHANG A Q , et al. JAUMIN: A programming framework for large-scale numerical simulation on unstructured meshes[J]. CCF Transactions on High Performance Computing, 2019, 1 (1): 35- 48.
17
莫毅, 陈璠, 许笑颜, 等. 航空发动机燃烧室两相湍流燃烧建模与仿真[J]. 清华大学学报(自然科学版), 2023, 63 (4): 670- 680.
MO Y , CHEN F , XU X Y , et al. Modeling and simulation of two-phase turbulent combustion in aeroengine combustors[J]. Journal of Tsinghua University (Science and Technology), 2023, 63 (4): 670- 680.
18
SCHNEIDER C , DREIZLER A , JANICKA J . Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows[J]. Flow, Turbulence and Combustion, 2005, 74 (1): 103- 127.
19
FREITAG M , KLEIN M . Direct numerical simulation of a recirculating, swirling flow[J]. Flow, Turbulence and Combustion, 2005, 75 (1): 51- 66.
20
FREITAG M , KLEIN M , GREGOR M , et al. Mixing analysis of a swirling recirculating flow using DNS and experimental data[J]. International Journal of Heat and Fluid Flow, 2006, 27 (4): 636- 643.
21
JONES W P , MARQUIS A J , PRASAD V N . LES of a turbulent premixed swirl burner using the Eulerian stochastic field method[J]. Combustion and Flame, 2012, 159 (10): 3079- 3095.
22
PAPAFILIPPOU N , CHISHTY M A , GEBART R . On the flame shape in a premixed swirl stabilised burner and its dependence on the laminar flame speed[J]. Flow, Turbulence and Combustion, 2022, 108 (2): 461- 487.
23
SPALART P R . Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21 (3): 252- 263.
24
SPALART P R , DECK S , SHUR M L , et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20 (3): 181- 195.
25
STRELETS M. Detached eddy simulation of massively separated flows[C]//Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reno, USA: AIAA, 2001: 879.
26
GRITSKEVICH M S , GARBARUK A V , SCHÜTZE J , et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow, Turbulence and Combustion, 2012, 88 (3): 431- 449.
27
MARGHERI L , MELDI M , SALVETTI M V , et al. Epistemic uncertainties in RANS model free coefficients[J]. Computers & Fluids, 2014, 102, 315- 335.
28
XIAO H , CINNELLA P . Quantification of model uncertainty in RANS simulations: A review[J]. Progress in Aerospace Sciences, 2019, 108, 1- 31.
29
宋汉奇, 张恺玲, 马鸣, 等. DES与DDES在湍流分离中的原理与性能研究[J]. 北京航空航天大学学报, 2023, 49 (9): 2482- 2492.
SONG H Q , ZHANG K L , MA M , et al. Theory and performance research of DES and DDES in turbulent separation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (9): 2482- 2492.
30
COLIN O , DUCROS F , VEYNANTE D , et al. A thickened flame model for large eddy simulations of turbulent premixed combustion[J]. Physics of Fluids, 2000, 12 (7): 1843- 1863.
31
LEGIER J P, POINSOT T, VEYNANTE D D. Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion[C]//Proceedings of the Summer Program. Stanford, USA: Center for Turbulence Research, 2000: 157-168.
32
CONSTANTINE P G , DIAZ P . Global sensitivity metrics from active subspaces[J]. Reliability Engineering & System Safety, 2017, 162, 1- 13.
33
LUKACZYK T W, CONSTANTINE P, PALACIOS F, et al. Active subspaces for shape optimization[C]//Proceedings of the 10th AIAA Multidisciplinary Design Optimization Conference. National Harbor, USA: AIAA, 2014: 1171.
34
MICHALEWICZ Z , SCHOENAUER M . Evolutionary algorithms for constrained parameter optimization problems[J]. Evolutionary Computation, 1996, 4 (1): 1- 32.
35
KATOCH S , CHAUHAN S S , KUMAR V . A review on genetic algorithm: Past, present, and future[J]. Multimedia Tools and Applications, 2021, 80 (5): 8091- 8126.
36
JEBARI K , MADIAFI M . Selection methods for genetic algorithms[J]. International Journal of Emerging Sciences, 2013, 3 (4): 333- 344.
37
HELTON J C , DAVIS F J . Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[J]. Reliability Engineering & System Safety, 2003, 81 (1): 23- 69.
38
阿嵘, 齐玢, 陈鑫, 等. 基于代理模型的双路燃气组合热试验参数优化[J]. 航空动力学报, 2023, 38 (9): 2097- 2106.
A R , QI B , CHEN X , et al. Parameter optimization of dual gas flow combined thermal test based on surrogate model[J]. Journal of Aerospace Power, 2023, 38 (9): 2097- 2106.
39
GOLBERG D E . Genetic algorithms in search, optimization, and machine learning[M]. Massachusetts: Addison-Wesley, 1989.
40
SAMPSON J R . Adaptation in natural and artificial systems (John H. Holland)[J]. SIAM Review, 1976, 18 (3): 529- 530.
41
DEB K , PRATAP A , AGARWAL S , et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transac-tions on Evolutionary Computation, 2002, 6 (2): 182- 197.
42
卓文波, 谭国笔, 陈秋任, 等. 基于代理模型和NSGA-Ⅱ的超高强钢电阻点焊工艺参数多目标优化[J]. 焊接学报, 2024, 45 (4): 20- 25.
ZHUO W B , TAN G B , CHEN Q R , et al. Multi-objective optimization of resistance spot welding process parameters of ultra-high strength steel based on agent model and NSGA-Ⅱ[J]. Transactions of the China Welding Institution, 2024, 45 (4): 20- 25.

基金

国家自然科学基金国家杰出青年科学项目(52025062)
先进航空动力创新工作站项目(HKCX2024-01-026)

版权

版权所有,未经授权,不得转载。
PDF(15116 KB)

审稿意见

Accesses

Citation

Detail

段落导航
相关文章

/