架空线路山火次生和衍生事故灾害链的断链减灾策略

章彬彬, 蒋弘瑞, 张佳庆, 孙韬, 纪杰, 丁龙

清华大学学报(自然科学版) ›› 2026, Vol. 66 ›› Issue (1) : 100-109.

PDF(1677 KB)
PDF(1677 KB)
清华大学学报(自然科学版) ›› 2026, Vol. 66 ›› Issue (1) : 100-109. DOI: 10.16511/j.cnki.qhdxxb.2025.27.049
火灾科学

架空线路山火次生和衍生事故灾害链的断链减灾策略

作者信息 +

Strategy of cutting and mitigating the disaster chain for secondary and derivative accidents of overhead line failures and wildfire

Author information +
文章历史 +

摘要

在森林火灾频发、输电线路密集的区域, 架空线路失效可能引发森林火灾, 森林火灾的蔓延也会影响周边架空线路的安全稳定运行。目前, 架空线路失效与森林火灾的次生和衍生事故演化机理尚不明确, 导致相应风险管控措施可能存在针对性不足的问题。因此, 该文基于复杂网络理论构建架空线路失效及森林火灾次生和衍生事故灾害链网络, 探究“森林火灾”和“架空线路失效”互相诱发对灾害链形成机制的影响。一方面, 通过计算节点中心度、接近中心度等指标, 多角度评估各灾害节点在灾害链网络中的作用及影响程度, 进而确定架空线路失效及森林火灾次生和衍生事故灾害链的关键节点; 另一方面, 以灾害链各演化路径的传递概率为评价准则, 利用Jaccard指数提取关键传播路径。在此基础上, 结合断链减灾理论明确如何有效地阻止次生灾害的发生, 为实际森林火灾防控及森林电网运维提供决策支持。

Abstract

Objective: Forest fires can be triggered by the failure of overhead power lines, especially in forests that are prone to wildfires and have dense power transmission networks. The spread of such fires can, in turn, endanger the safety and stability of nearby power infrastructure. Understanding the evolution of forest fires and the mechanisms behind secondary and derivative accidents is essential for implementing risk control at key nodes within the disaster chain. This is crucial in reducing the likelihood of disaster occurrence and the severity of its consequences. However, research on secondary and derivative disaster chains related to forest fires remains limited, and no existing studies have addressed the coupling induction between forest fires and overhead line failures. This gap may lead to risk control measures that are inadequately targeted. Methods: In this study, a secondary and derivative disaster chain network of overhead line failures and forest fires is built based on complex network theory, and the effect of the coupling induction of forest fires and overhead line failures on the formation mechanism of the disaster chain is investigated. First, indicators such as degree centrality and closeness centrality are calculated to evaluate the role and influence degree of each disaster node in the disaster chain network from multiple perspectives. Subsequently, the key nodes in the failure and secondary and derivative disaster chains between overhead lines and forest fires are determined. Second, the transmission probability of each evolution path in the disaster chain is used as the assessment criterion, and the Jaccard index is employed to identify the key evolution paths. Results: First, 92 related accident cases are analyzed, and experts are consulted to determine the inducing relationships among various disaster nodes. Based on this, a disaster chain evolution model is constructed to investigate the failure and secondary and derivative accident chains of the overhead lines and forest fires. This model has 21 disaster nodes, 46 edges, and 60 disaster evolution paths. Four indicators are calculated: degree centrality, closeness centrality, betweenness centrality, and disaster node hub count. The top five disaster nodes are forest fires, casualties, overhead line failure, forest resource destruction, and toxic gas leakage. The transmission probabilities of different disaster evolution paths are calculated based on the frequency of the disaster chain nodes in statistics and the Jaccard index. To confirm the validity of the model and its conclusions, a sensitivity analysis is conducted at the node of overhead line failures, which verifies the relevance of risk management for overhead lines in reducing the risk of the disaster chain. Conclusions: Based on theory of chain-cutting disaster mitigation, how to cut off the evolution paths of the disaster chain or the control key disaster nodes and how to prevent the occurrence of secondary and derivative accidents are clarified in this paper to provide decision support for the actual prevention and control of forest fires and the operation and maintenance of forest power grids.

关键词

森林火灾 / 架空线路失效 / 互相诱发 / 灾害链

Key words

wildfire / overhead line failure / coupling-induced disasters / disaster chain network

引用本文

导出引用
章彬彬, 蒋弘瑞, 张佳庆, . 架空线路山火次生和衍生事故灾害链的断链减灾策略[J]. 清华大学学报(自然科学版). 2026, 66(1): 100-109 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.049
Binbin ZHANG, Hongrui JIANG, Jiaqing ZHANG, et al. Strategy of cutting and mitigating the disaster chain for secondary and derivative accidents of overhead line failures and wildfire[J]. Journal of Tsinghua University(Science and Technology). 2026, 66(1): 100-109 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.049
中图分类号: S762.3   

参考文献

1
高玉琴, 徐诺, 汪键, 等. 基于复杂网络的洪涝灾害链风险评估[J]. 水资源保护, 2025, 41 (2): 115- 122.
GAO Y Q , XU N , WANG J , et al. Risk assessment of flood disaster chain based on complex network[J]. Water Resources Protection, 2025, 41 (2): 115- 122.
2
BANDARA S , RAJEEV P , GAD E . Power distribution system faults and wildfires: Mechanisms and Prevention[J]. Forests, 2023, 14 (6): 1146.
3
张佳庆, 孙韬, 蒋弘瑞, 等. 基于林火风险的高压输电线路无人机巡检路径规划[J]. 清华大学学报(自然科学版), 2024, 64 (5): 911- 921.
ZHANG J Q , SUN T , JIANG H R , et al. Path planning for transmission line unmanned aircraft inspection based on forest fire risk[J]. Journal of Tsinghua University (Science and Technology), 2024, 64 (5): 911- 921.
4
CHOOBINEH M , ANSARI B , MOHAGHEGHI S . Vulnerability assessment of the power grid against progressing wildfires[J]. Fire Safety Journal, 2015, 73, 20- 28.
5
GUO Y F , CHEN R X , SHI J G , et al. Determination of the power transmission line ageing failure probability due to the impact of forest fire[J]. IET Generation, Transmission & Distribution, 2018, 12 (16): 3812- 3819.
6
HARDY C E. The Gisborne era of forest fire research: Legacy of a pioneer[M]. Washington: U.S. Department of Agriculture, Forest Service, 1983.
7
CHUVIECO E , AGUADO I , YEBRA M , et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies[J]. Ecological Modelling, 2010, 221 (1): 46- 58.
8
JIANG H R , ZHANG J Q , DING L , et al. Regional-scale risk assessment of forest fires induced by distribution lines via a hybrid approach[J]. JUSTC, 2024, 54 (12): 1207.
9
郭增建. 简论灾害物理学[J]. 高原地震, 1993 (2): 1- 3.
GUO Z J . Brief discussion on disaster physics[J]. Earthquake Research in Plateau, 1993 (2): 1- 3.
10
方志耕, 杨保华, 陆志鹏, 等. 基于Bayes推理的灾害演化GERT网络模型研究[J]. 中国管理科学, 2009, 17 (2): 102- 107.
FANG Z G , YANG B H , LU Z P , et al. The GERT network model study of disaster evolution based on Bayes inference[J]. Chinese Journal of Management Science, 2009, 17 (2): 102- 107.
11
QIE Z J , RONG L L . An integrated relative risk assessment model for urban disaster loss in view of disaster system theory[J]. Natural Hazards, 2017, 88 (1): 165- 190.
12
NADERPOUR M , RIZEEI H M , KHAKZAD N , et al. Forest fire induced Natech risk assessment: A survey of geospatial technologies[J]. Reliability Engineering & System Safety, 2019, 191, 106558.
13
JENSEN T , MAHMUD Y . Decentering sensemaking: The Mann Gulch disaster revisited[J]. Scandinavian Journal of Management, 2023, 39 (3): 101279.
14
YANG Y , YANG H J . Complex network-based time series analysis[J]. Physica A: Statistical Mechanics and its Applications, 2008, 387 (5-6): 1381- 1386.
15
汪小帆, 李翔, 陈关荣. 复杂网络理论及其应用[M]. 北京: 清华大学出版社, 2006.
WANG X F, LI X, CHEN G R. Complex networks and its application[M]. Tsinghua University Press, 2006. (in Chinese)
16
戴剑勇, 甘美艳. 基于Jaccard-Markov模型的核事故灾害链演化概率分析[J]. 科技与创新, 2024 (1): 147- 149.
DAI J Y , GAN M Y . Probability analysis of nuclear accident disaster chain evolution based on Jaccard-Markov model[J]. Science and Technology & Innovation, 2024 (1): 147- 149.
17
李浩然, 王子恒, 杨起帆, 等. 复杂网络下地铁灾害链演化模型与风险分析[J]. 中国安全科学学报, 2021, 31 (11): 141- 147.
LI H R , WANG Z H , YANG Q F , et al. Evolutionary model and risk analysis of metro disaster chain under complex network[J]. China Safety Science Journal, 2021, 31 (11): 141- 147.
18
全英楠. 城市暴雨灾害链网络及关键演化路径研究[D]. 重庆: 重庆大学, 2022.
QUAN Y N. Research on urban rainstorm disaster chain network and critical evolution path[D]. Chongqing: Chongqing University, 2022. (in Chinese)
19
李磊, 马梦格, 折亚亚, 等. 复杂网络下雨洪灾害链风险分析及断链减灾研究[J]. 中国安全科学学报, 2023, 33 (12): 192- 197.
LI L , MA M G , SHE Y Y , et al. Risk analysis of rainstorm flood disaster chain and research on disaster mitigation of broken chain under complex network[J]. China Safety Science Journal, 2023, 33 (12): 192- 197.
20
JACCARD P . Étude comparative de la distribution florale dans une portion des Alpes et du Jura[J]. Bulletin de la Societe Vaudoise des Sciences Naturelles, 1901, 37 (142): 547- 579.
21
陈国华, 李佳玲, 陈学希, 等. 灾害链网络下城市区域安全风险评估模型[J]. 中国安全科学学报, 2022, 31 (11): 146- 153.
CHEN G H , LI J L , CHEN X X , et al. A safety risk assessment model of urban areas under disaster chain network[J]. China Safety Science Journal, 2022, 32 (11): 146- 153.
22
林宇航. 基于复杂网络的地铁灾害链演化分析及影响仿真[D]. 西安: 西安理工大学, 2022.
LIN Y H. Evolution analysis and impact simulation of subway disaster chain based on complex network[D]. Xi'an: Xi'an University of Technology, 2022. (in Chinese)
23
AL-REFAEIO M M A, 李尔彬, AL-RAHAWIM. 森林火灾的影响及应对策略分析——以阿尔及利亚北部地区为例[J]. 中国林业经济, 2024 (5): 35- 44.
AL-REFAEI O M M A , LI E B , AL-RAHAWI M . Impacts and response strategies of forest fires: A case study of Northern Algeria[J]. China Forestry Economics, 2024 (5): 35- 44.
24
白夜, 武英达, 王博, 等. 我国森林草原火灾潜在风险应对策略研究[J]. 林业资源管理, 2020 (1): 11-14, 29.
BAI Y , WU Y D , WANG B , et al. Risk-coping strategies for forest and grassland fires in China[J]. Forest Resources Management, 2020 (1): 11-14, 29.
25
MOORE P F . Global wildland fire management research needs[J]. Current Forestry Reports, 2019, 5 (4): 210- 225.
26
肖盛燮, 隋严春, 刘文方, 等. 孕源断链在土地沙漠化防御技术中的实践剖析[J]. 重庆交通学院学报, 2007, 26 (3): 149- 152.
XIAO S X , SUI Y C , LIU W F , et al. Application of chain-cutting disaster mitigation from gestation source to preventing land desertification[J]. Journal of Chongqing Jiaotong University, 2007, 26 (3): 149- 152.

基金

国网安徽省电力有限公司科技项目(B31205240012)

版权

版权所有,未经授权,不得转载。
PDF(1677 KB)

Accesses

Citation

Detail

段落导航
相关文章

/