PDF(4754 KB)
PDF(4754 KB)
PDF(4754 KB)
基于MCMC模拟的Bayes时空交互防洪韧性评估
Urban flood resilience assessment using a Bayesian space-time interaction model based on MCMC simulation
在城市化进程加速与气候变化的背景下,实现防洪韧性的精准评估对城市的可持续发展具有重要意义。现有的防洪韧性评估研究多采用经典统计方法,对小样本数据较为敏感,且未考虑空间相关性对城市防洪韧性的影响。该文采用基于Markov链Monte Carlo(MCMC)方法的Bayes时空交互模型(BSTIM),将邻接城市的空间信息纳入时空演化过程,深入揭示防洪韧性在时间与空间上的耦合过程,最后将其应用于长三角地区的防洪韧性评估研究。结果表明:BSTIM对城市防洪韧性的时空解译度达到93%以上,对时空数据的拟合较好,实现了对防洪韧性时空特征的精准评估。长三角地区的防洪韧性在研究期间呈现上升趋势,空间布局整体上形成“低-高-中”的空间格局,局部变化趋势呈现“东高西低,北部居中”的特点。城市防洪韧性空间格局的冷热聚集差异性显著,局部变化冷热聚集形成“西冷东热”的格局;半数地区呈现“热-热”与“冷-热”的聚集特点,表明长三角地区城市抗洪的未来趋势向好。该研究成果可为城市防洪韧性发展重点的有效识别提供理论支撑与决策参考。
Objective: Against the backdrop of accelerated urbanization and climate change, accurately assessing flood resilience holds significant implications for the sustainable development of cities. Previous studies on flood resilience assessment have employed classical statistical methods, which are relatively sensitive to small-sample data and fail to consider the effect of spatial correlation on urban flood resilience. To mitigate disaster risks and enhance cities' capacity to withstand urban floods, this study focuses on examining the intrinsic spatial structures of flood resilience while accounting for spatial correlation and space-time heterogeneity. Methods: This study employed the Bayesian space-time interaction model (BSTIM) based on the Markov chain Monte Carlo method to achieve an accurate assessment of flood resilience. The model incorporated the spatial information of adjacent cities into the space-time evolution of flood resilience, enabling the revelation of the coupled space-time dynamics. In addition, a comparative study of the model was conducted to verify the effectiveness of the selected parameter. Finally, BSTIM was applied to assess flood resilience in 41 cities within the Yangtze River Delta region, and targeted policy recommendations were proposed. Results: The results showed that the space-time interpretation degree of BSTIM for urban flood resilience exceeded 93%, demonstrating excellent performance in fitting space-time data and enabling an accurate assessment of the space-time characteristics. (1) Flood resilience in the Yangtze River Delta region showed an upward trend during the study period, with the highest annual growth rate of 17.89% in 2017 and the lowest of 14.71% in 2009. (2) Significant differences existed in the spatial distribution of flood resilience across the region, forming an overall "low-high-medium" spatial pattern. (3) Local change trends varied considerably, presenting a characteristic pattern of "high in the east, low in the west, and medium in the north." (4) The spatial pattern of urban flood resilience exhibited significant differences in cold-hot spot clustering, with local changes forming a "cold in the west, hot in the east" pattern. Over half of the areas in the Yangtze River Delta region displayed "hot-hot" and "cold-hot" agglomeration characteristics, with "hot-hot" being the most prevalent. Conclusion: BSTIM provided an accurate assessment of space-time interaction effects in the space-time evolution of flood resilience. In addition, the model identified spatial distribution patterns, local change trends, cold-hot agglomeration distribution, and future development trends in flood resilience. Based on the results, the study captured the development dynamics of flood resilience in various cities of the Yangtze River Delta region, highlighting key priorities for flood prevention and mitigation. This research provides important reference value and theoretical support for effectively identifying critical areas for urban flood resilience development, thereby enhancing the flood resistance and disaster relief capabilities of urban agglomerations.
Markov链Monte Carlo方法 / Bayes时空交互模型 / 城市防洪韧性 / 长三角地区
Markov chain Monte Carlo method / Bayesian space-time interaction model / urban flood resilience / the Yangtze River Delta
| 1 |
张金良, 罗秋实, 王冰洁, 等. 城市极端暴雨洪涝灾害成因及对策研究进展[J]. 水资源保护, 2024, 40(1): 6- 15.
|
| 2 |
王凯丰, 张洪斌, 力刚, 等. 城市洪涝韧性的研究进展及关键支撑技术综述[J]. 水利水电技术(中英文), 2023, 54(11): 77- 88.
|
| 3 |
王启飞, 赵逸涵, 张慧, 等. 基于PSR和信息敏感性的城市韧性度评价: 以北京市为例[J]. 中国安全科学学报, 2023, 33(8): 198- 204.
|
| 4 |
|
| 5 |
李俊明, 周佳卉, 李杰, 等. 基于贝叶斯统计的黄河流域生态文明与共同富裕的时空协同演进研究[J]. 地球信息科学学报, 2023, 25(4): 766- 782.
|
| 6 |
于明雪, 孙建国, 杨维涛, 等. 基于贝叶斯层次时空模型的甘肃省土地利用程度演变分析[J]. 地理科学, 2022, 42(5): 918- 925.
|
| 7 |
段琳琼, 陈维肖, 王楠楠, 等. 基于贝叶斯时空模型的建设用地扩张格局差异分析——以长三角和中原城市群为例[J]. 地域研究与开发, 2021, 40(1): 168- 174.
|
| 8 |
|
| 9 |
黄俊宝. 基于贝叶斯层次时空模型的中国区域科技创新能力研究[D]. 深圳: 深圳大学, 2020.
HUANG J B. Analysis of reginal technological innovation capability using Bayesian hierarchy spatio-temporal model[D]. Shenzhen: Shenzhen University, 2020. (in Chinese)
|
| 10 |
吕建康, 孙建国, 谢甫. 贝叶斯层次时空模型在甘肃省AOD时空分布中的应用[J]. 无线电工程, 2023, 53(3): 707- 713.
|
| 11 |
陈长坤, 孙凤琳. 基于熵权-灰色关联度分析的暴雨洪涝灾情评估方法[J]. 清华大学学报(自然科学版), 2022, 62(6): 1067- 1073.
|
| 12 |
魏盛宇, 翟越, 赵廿. 基于多源数据的西安市暴雨洪涝脆弱性评估及其空间分异特性[J]. 清华大学学报(自然科学版), 2025, 65(1): 174- 185.
|
| 13 |
|
| 14 |
贺山峰, 梁爽, 吴绍洪, 等. 长三角地区城市洪涝灾害韧性时空演变及其关联性分析[J]. 长江流域资源与环境, 2022, 31(9): 1988- 1999.
|
| 15 |
|
| 16 |
|
| 17 |
|
| 18 |
|
| 19 |
|
| 20 |
杨芳, 胡豫英, 宋利祥, 等. 基于动态网格和局部时间步长技术的城市洪涝模型加速方法[J]. 清华大学学报(自然科学版), 2024, 64(12): 2132- 2143.
|
| 21 |
代鑫, 黄弘, 汲欣愉, 等. 基于机器学习的城市暴雨内涝时空快速预测模型[J]. 清华大学学报(自然科学版), 2023, 63(6): 865- 873.
|
| 22 |
代鑫, 黄弘, 于富才, 等. 暴雨内涝灾害下社区韧性压力测试方法研究[J]. 清华大学学报(自然科学版), 2024, 64(9): 1587- 1596.
|
| 23 |
吕伟, 江惠华, 汪京辉, 等. 洪涝灾害下城市大规模人员疏散分区规划方法[J]. 清华大学学报(自然科学版), 2024, 64(11): 1880- 1892.
|
| 24 |
张颖, 傅强. GJR-CAViaR模型的贝叶斯分位数回归——基于Gibbs抽样的MCMC算法实现[J]. 中央财经大学学报, 2017(7): 87- 95.
|
| 25 |
杨文娇, 任黎, 张岑, 等. 基于贝叶斯的密云水库入库径流频率综合不确定性研究[J]. 水电能源科学, 2025, 43(5): 6-9, 28.
|
| 26 |
|
| 27 |
韩秀兰, 王思贤, 李俊明. 基于人口老龄化的中国医疗卫生人员配置充分性测度——贝叶斯时空演化分析实证[J]. 数理统计与管理, 2023, 42(3): 381- 390.
|
| 28 |
张俊辉, 冯子健, 杨超, 等. 基于层次贝叶斯时空模型的空间多尺度联合分析模型的构建及应用研究[J]. 中国卫生统计, 2013, 30(2): 199- 202.
|
| 29 |
|
| 30 |
姚瑶, 李玉倩, 唐诗琪, 等. 基于熵权-TOPSIS模型的京冀灰岩矿区土壤质量评价[J]. 水文地质工程地质, 2025, 52(4): 87- 97.
|
| 31 |
陈军飞, 张玉琦, 嵇娟, 等. 长三角城市群洪涝韧性时空演化及影响因素[J]. 水资源保护, 2024, 40(6): 58- 68.
|
/
| 〈 |
|
〉 |