抽水蓄能电站的电缆隧道坡度对其火蔓延特性的影响

张佳庆, 闫旭东, 谭甜甜, 过羿, 纪杰

清华大学学报(自然科学版) ›› 2026, Vol. 66 ›› Issue (1) : 48-57.

PDF(17109 KB)
PDF(17109 KB)
清华大学学报(自然科学版) ›› 2026, Vol. 66 ›› Issue (1) : 48-57. DOI: 10.16511/j.cnki.qhdxxb.2025.27.060
火灾科学

抽水蓄能电站的电缆隧道坡度对其火蔓延特性的影响

作者信息 +

Experimental investigation of slope influence on the cable fire spreading characteristics in pumped storage power stations

Author information +
文章历史 +

摘要

抽水蓄能电站中, 电缆隧道通常具有落差高、距离长、坡度大的特性, 这将影响火灾事故中电缆火蔓延行为。该文基于可变坡度缩尺寸(缩尺比1∶10)电缆隧道开展了电缆火蔓延实验, 探究了坡度(0°~45°) 对电缆火焰形态、电缆表面火焰前锋距离、平均火蔓延速度、电缆表面和顶棚温度等特征参数的影响。结果表明, 电缆表面火焰前锋距离和电缆平均火蔓延速度随着电缆隧道坡度的增大而增大。坡度为0°、15°、30°、45°条件下的火焰前锋距离分别为539、783、1 076、1 300 mm, 平均火蔓延速度分别为0.43、0.92、1.28、1.53 mm/s。倾斜条件下, 火焰贴附效应和烟囱效应增大了火焰的倾斜角度和未燃区电缆的预热面积, 提升了未燃区电缆的升温速率, 导致平均火蔓延速度增大, 而电缆隧道顶棚辐射加热作用对电缆火蔓延的影响较小。

Abstract

Objective: Pumped storage power stations pump water to upper reservoirs when the electricity load is low; they release water to lower reservoirs to generate electricity when the electricity load is high. In these stations, cable tunnels, which connect underground transformers and ground switch stations, usually have high-fall, long-distance, and large-slope attributes. These affect the cable flame spread characteristics. Methods: This paper studies the effect of slope (0°-45°) on cable flame morphology, flame front distance, average flame spread rate, cable surface temperature, and ceiling temperature by conducting cable flame spreading experiments in a 1/10 small-scale cable tunnel. Thermocouples are used to measure the cable surface temperature and tunnel ceiling temperature. A camera is used to record the cable flame morphology, while a computer is used to record data from the camera and thermocouples. Results: The flame front distance and the average flame spread rate increase with the tunnel slope. When the tunnel slopes are 0°, 15°, 30°, and 45°, the cable flame front distances are 539, 783, 1076, and 1 300 mm, respectively, with average cable flame spread rates of 0.43, 0.92, 1.28, and 1.53 mm/s. With increasing slope, the first peak of the cable surface temperature moves upward, and so does the first peak of the tunnel ceiling temperature. When the slope is 0°, the first peak temperature and position of the cable surface and the ceiling are 650 ℃ and -0.25 m, respectively. When the slope is 15°, the first peak temperature and position of the cable surface and the ceiling are 400 ℃ and -0.50 m, respectively. When the slope is 30°, the cable surface's first peak temperature and position are 200℃ and -0.25 m, respectively, whereas those of the ceiling are 250 ℃ and -0.50 m, respectively. When the slope is 45°, the cable surface's first peak temperature and position are 200 ℃ and -1.00 m, respectively, whereas those of the ceiling are 250 ℃ and -1.50 m, respectively. The peak position of the tunnel ceiling temperature is farther than the peak position of the cable surface temperature. Conclusions: First, in the inclined cable tunnel, the Coandǎ and stacking effects increase the flame inclined angle and the preheating area of the unburned cable, with the unburned cable's heating rate and the average cable flame rate increasing. Second, the cable ceiling heating has little effect on cable flame spreading. However, the copper core inside the cable acts as a "heater" and a "radiator, " affecting the cable's burning behavior. The high-temperature core heats the unburned cable zone, increasing the preheating area and cable flame spread rate. Third, in the inclined tunnel, the stacking effect enhances the heat dissipation of cable burning. In the horizontal tunnel, the high-temperature ceiling heats the cable and increases the cable's burning time. Fourth, under the combined effects of longitudinal airflow inertia and thermal buoyancy forces, the peak position of the tunnel ceiling temperature is farther than the peak position of the cable surface temperature.

关键词

电缆隧道 / 电缆火蔓延 / 坡度 / 烟囱效应 / 抽水蓄能电站

Key words

cable tunnel / cable flame spread / slope / stacking effect / pumped storage power station

引用本文

导出引用
张佳庆, 闫旭东, 谭甜甜, . 抽水蓄能电站的电缆隧道坡度对其火蔓延特性的影响[J]. 清华大学学报(自然科学版). 2026, 66(1): 48-57 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.060
Jiaqing ZHANG, Xudong YAN, Tiantian TAN, et al. Experimental investigation of slope influence on the cable fire spreading characteristics in pumped storage power stations[J]. Journal of Tsinghua University(Science and Technology). 2026, 66(1): 48-57 https://doi.org/10.16511/j.cnki.qhdxxb.2025.27.060
中图分类号: TM622   

参考文献

1
仇岚, 李海波. 500kV XLPE电缆在宜兴抽水蓄能电站的应用[J]. 华东电力, 2008 (4): 100- 102.
QIU L , LI H B . Application of 500 kV XLPE cables to Yixing pumped-storage power station[J]. East China Electric Power, 2008 (4): 100- 102.
2
何艳丽. 云浮水源山抽水蓄能电站开关站和高压电缆洞布置方案选择[J]. 广东水利水电, 2023 (3): 87- 92.
HE Y L . Selection of switching station and high voltage cable tunnel layout of Yunfu Shuiyuanshan pumped storage power station[J]. Guangdong Water Resources and Hydropower, 2023 (3): 87- 92.
3
刘振庚, 王强, 王峻. 阳江抽水蓄能电站高压电缆洞斜井反井钻机改造及应用[J]. 四川水利, 2022, 43 (1): 107- 109.
LIU Z G , WANG Q , WANG J . Reconstruction and application of inclined shaft reverse drilling rig for high voltage cable hole in Yangjiang pumped storage power station[J]. Sichuan Water Sichuan Water Conservancy, 2022, 43 (1): 107- 109.
4
张春洪, 李坚. 深圳抽水蓄能电站高压电缆洞施工技术方案[J]. 云南水力发电, 2014, 30 (2): 54- 58.
ZHANG C H , LI J . Construction technical scheme for high voltage cable tunnel of Shenzhen pumped storage power station[J]. Yunnan Water Power, 2014, 30 (2): 54- 58.
5
付强. 典型电缆燃烧性能研究[D]. 合肥: 中国科学技术大学, 2012.
FU Q. Study on fire performance of typical cables[D]. Hefei: University of Science and Technology of China, 2012. (in Chinese)
6
王蔚. 聚氯乙烯电缆火灾特性及其影响因素研究[D]. 合肥: 中国科学技术大学, 2008.
WANG W. The study on fire performance of PVC cables and the impact factors[D]. Hefei: University of Science and Technology of China, 2008. (in Chinese)
7
马文辉. 城市地下综合管廊电缆火灾数值模拟研究[D]. 郑州: 郑州大学, 2021.
MA W H. Numerical simulation of cable combustion process in urban underground utility tunnel under internal heat source[D]. Zhengzhou: Zhengzhou University, 2021. (in Chinese)
8
JIA S Y , HU L H , MA Y X , et al. Experimental study of downward flame spread and extinction over inclined electrical wire under horizontal wind[J]. Combustion and Flame, 2022, 237, 111820.
9
HU L H , ZHANG Y S , YOSHIOKA K , et al. Flame spread over electric wire with high thermal conductivity metal core at different inclinations[J]. Proceedings of the Combustion Institute, 2015, 35 (3): 2607- 2614.
10
LU Y , HU L H , MA Y X , et al. An experimental investigation of flames spread interaction over two parallel electrical wires of various separations[J]. Proceedings of the Combustion Institute, 2023, 39 (3): 3813- 3821.
11
XU T , CHEN C K , DU W H , et al. Experimental study on fire spread behavior of single 110kV cable under different layout conditions[J]. Fire Safety Journal, 2023, 141, 103957.
12
LIANG Y T , LI S H , CHEN Y , et al. Flame spread over inclined wires: The effect of molten flow behavior[J]. Thermal Science and Engineering Progress, 2025, 58, 103181.
13
HU L H , LU Y , YOSHIOKA K , et al. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal-and micro-gravity[J]. Proceedings of the Combustion Institute, 2017, 36 (2): 3045- 3053.
14
WANG W F , LU C Z , JI X H , et al. Research on overcurrent heating characteristics of copper wires at different inclination angles[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148 (11): 4833- 4842.
15
HUANG X Y , NAKAMURA Y . A review of fundamental combustion phenomena in wire fires[J]. Fire Technology, 2020, 56 (1): 315- 360.
16
CHEN C K , CHEN J , ZHAO X L , et al. The effect of inclination angle on fire behaviors of stay cable in an intercepted double-layer cable model[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140 (6): 2701- 2710.
17
LIM S J , PARK S H , PARK J , et al. Flame spread over inclined electrical wires with AC electric fields[J]. Combustion and Flame, 2017, 185, 82- 92.
18
ZHAO L Y , ZHANG Q X , TU R , et al. Effects of electric current and sample orientation on flame spread over electrical wires[J]. Fire Safety Journal, 2020, 112, 102967.
19
HUANG X J , DING H L , WANG M M . Effects of space size and fire location on heat transfer in flame spread over electrical wire in a small tunnel[J]. Case Studies in Thermal Engineering, 2024, 64, 105523.
20
XU D S , LI Y F , LI J X , et al. Evaluating the combustion and flame extension characteristics of cable fire in utility tunnels with spontaneous combustion scenarios: An experimental study[J]. Tunnelling and Underground Space Technology, 2023, 140, 105244.
21
LIANG K , HAO X F , AN W G , et al. Study on cable fire spread and smoke temperature distribution in T-shaped utility tunnel[J]. Case Studies in Thermal Engineering, 2019, 14, 100433.
22
耿德望. 廊道构型对综合管廊电缆火灾影响规律的研究[D]. 合肥: 中国科学技术大学, 2022.
GENG D W. Study on the influence of corridor configuration on cable fire in utility tunne[D]. Hefei: University of Science and Technology of China, 2022. (in Chinese)
23
WANG T , TANG Y H , WANG Z , et al. Flame spread over cables in a utility tunnel: Effect of longitudinal wind and inclination angle[J]. Tunnelling and Underground Space Technology, 2023, 131, 104848.
24
王小山. 狭长受限空间电缆火蔓延行为及温度分布规律研究[D]. 徐州: 中国矿业大学, 2023.
WANG X S. Study of cable fire spread behavior and temperature distribution patterns in confined spaces[D]. Xuzhou: China University of Mining and Technology, 2023. (in Chinese)
25
陈长坤, 徐童, 高飞, 等. 狭长空间内220 kV大截面电缆火灾燃烧特点及烟气控制实验研究[J]. 中国安全生产科学技术, 2023, 19 (5): 157- 163.
CHEN C K , XU T , GAO F , et al. Experimental study on combustion characteristics and smoke control of 220 kV cable with large cross-section in long and narrow space[J]. Journal of Safety Science and Technology, 2023, 19 (5): 157- 163.
26
郭尊孟. 核电站室内电缆火灾规律研究[D]. 广州: 广东工业大学, 2018.
GUO Z M. Study on fire law of indoor cable in nuclear power plant[D]. Guangzhou: Guangdong University of Technology, 2018. (in Chinese)
27
秦亮. 地下综合管廊电缆桥架火灾发展及烟气温度场分布特性研究[D]. 福州: 福州大学, 2022.
QIN L. Study on fire development and smoke temperature field distribution characteristics of cable tray fire in underground utility tunnels[D]. Fuzhou: Fuzhou University, 2022. (in Chinese)
28
吴天琦. 基于实验与区域模型的受限空间多层电缆桥架火灾研究[D]. 合肥: 中国科学技术大学, 2016.
WU T Q. A combined experimental and zone modelling study of multi-layer cable tray fires in a confined space[D]. Hefei: University of Science and Technology of China, 2016. (in Chinese)
29
曾文琦. 聚乙烯电缆火蔓延及熔融滴落行为研究[D]. 长沙: 中南大学, 2022.
ZENG W Q. Research on fire spread and melt dripping behavior of polyethylene cable[D]. Changsha: Central South University, 2022. (in Chinese)
30
丁超, 李雨遥, 何凌峰, 等. 不同环境压力与倾角下电缆火燃烧特性研究[J]. 消防科学与技术, 2023, 42 (9): 1197- 1201.
DING C , LI Y Y , HE L F , et al. Study on the combustion characteristics of cable fire under different ambient pressure and inclination angle[J]. Fire Science and Technology, 2023, 42 (9): 1197- 1201.
31
吴照国, 杜芳, 包健康, 等. 隧道坡度对电缆隧道火灾蔓延影响研究[J]. 现代隧道技术, 2021, 58 (S1): 558- 565.
WU Z G , DU F , BAO J K , et al. Study on influence of slope on fire spread in cable tunnel[J]. Modern Tunneling Technology, 2021, 58 (S1): 558- 565.
32
吴执, 张武超, 王琅, 等. 烟囱效应对电缆隧道火灾蔓延影响研究[J]. 重庆交通大学学报(自然科学版), 2023, 42 (2): 60- 66.
WU Z , ZHANG W C , WANG L , et al. Influence of chimney effect on fire spread in cable tunnel[J]. Journal of Chongqing Jiaotong University (Natural Sciences), 2023, 42 (2): 60- 66.
33
张英, 王帅, 余飞扬, 等. 热老化对聚乙烯导线火蔓延特性的影响规律[J]. 武汉理工大学学报(信息与管理工程版), 2023, 45 (6): 856- 861.
ZHANG Y , WANG S , YU F Y , et al. Influence of thermal aging on flame spread characteristics of polyethylene wire[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2023, 45 (6): 856- 861.

基金

国网安徽省电力有限公司科技项目(B3120524000T)

版权

版权所有,未经授权,不得转载。
PDF(17109 KB)

Accesses

Citation

Detail

段落导航
相关文章

/