近壁面浮力扩散火焰的燃烧行为与振荡特性

于思远, 赵坤, 陈蔚, 林子铭

清华大学学报(自然科学版) ›› 2026, Vol. 66 ›› Issue (1) : 92-99.

PDF(19902 KB)
PDF(19902 KB)
清华大学学报(自然科学版) ›› 2026, Vol. 66 ›› Issue (1) : 92-99. DOI: 10.16511/j.cnki.qhdxxb.2026.27.008
火灾科学

近壁面浮力扩散火焰的燃烧行为与振荡特性

作者信息 +

Burning behaviors and pulsation frequency of near-wall buoyant diffusion flames

Author information +
文章历史 +

摘要

为了探究近壁面浮力扩散火焰非稳态燃烧行为和振荡特性, 该文开展了3种长宽比火源在不同火源壁面间距(0~4 cm) 和热释放速率(3.8~17.1 kW) 下的燃烧实验与数值模拟, 重点分析了火焰振荡频率和动态附壁特征参数的变化规律。研究结果表明:火焰附壁概率和附壁长度随着火源长宽比和热释放速率的增加而增加。对于长宽比为1的方形火源, 当热释放速率小于11.4 kW时, 全局振荡频率随着火源壁面间距的增加而增大; 当热释放速率大于或等于11.4 kW时, 全局振荡频率随火源壁面间距的增加而减小, 与长宽比为4和8的矩形火源的变化趋势一致。基于镜面模型分析, 获得近壁火源特征直径, 并进一步建立了无量纲全局振荡频率与Froude数倒数的无量纲关系式。该研究可为受限空间防火设计提供一定的理论依据。

Abstract

Objective: More than half of fire accidents happen in confined spaces. When a fire source is close to a solid wall, the wall may significantly restrict air entrainment, leading to flame attachment to the wall and even igniting the combustibles on it. However, studies on the effect of wall restrictions on the combustion and pulsation behaviors of near-wall fires remain notably limited. Methods: This study employed a self-designed experimental setup to investigate the influence of heat release rate (Q and fire-wall separation distance (S) on the global and local pulsation frequencies and attachment length of near-wall flames with different aspect ratios (r). Simulations of the combustion behaviors of near-wall fires were also conducted using ANSYS Fluent, yielding the associated flow fields and temperature distributions. Results: Experimental results show that near-wall fires exhibit unstable attachment behavior. Vertical walls impede air entrainment on the near-wall side of the flame, creating asymmetric air entrainment; meanwhile, horizontal walls primarily exacerbate flow-field deformation. The flame exhibits two burning patterns due to the restriction imposed by the wall: a varicose mode at larger values and a sinuous mode at smaller ones. Fast Fourier transform analysis of the flame width and correlation coefficient shows that the pulsation frequency is significantly influenced by Qand S. For attached flames (S=0 cm), the local pulsation frequency remains stable at varying Qvalues and normalized heights. At small S, low-frequency pulsation is pronounced under conditions of high Q. Rectangular fire sources (r=4 and 8) and the square fire source (r=1) show significant differences in global pulsation behavior. With increasing S, the global pulsation frequency for rectangular fire sources gradually decreases, while that for the square fire source decreases at large Qvalues (≥11.4 kW). Conclusions: (1) The flame evolution pattern of near-wall fires can be categorized as either varicose or sinuous mode, depending primarily on S. (2) Flame attachment probability and length increase with increasing Qand decreasing S. (3) For the square fire source with high Q(≥11.4 kW) and rectangular fire sources with r values of 4 and 8, the global pulsation frequency decreases with increasing S. (4) The characteristic diameter of near-wall fires is modified with the flame attachment probability and normalized flame attachment length to account for the effect of unstable flame attachment on air entrainment. Strong asymmetric entrainment causes significant spatial and temporal flame attachment, which increases the characteristic diameter of near-wall fires and reduces the global pulsation frequency. A unified correlation between the normalized flame pulsation frequency (Strouhal number) and the inverse of Froude number is proposed, which reasonably predicts the global pulsation frequency of near-wall fires with different S and Qvalues. Overall, the findings of this study lay a foundation for the reasonable prediction of flame evolution and spread in confined spaces.

关键词

近壁火源 / 火焰形态 / 全局振荡频率 / 火源特征直径

Key words

fire-wall distance / flame morphology / global pulsation frequency / characteristic diameter

引用本文

导出引用
于思远, 赵坤, 陈蔚, . 近壁面浮力扩散火焰的燃烧行为与振荡特性[J]. 清华大学学报(自然科学版). 2026, 66(1): 92-99 https://doi.org/10.16511/j.cnki.qhdxxb.2026.27.008
Siyuan YU, Kun ZHAO, Wei CHEN, et al. Burning behaviors and pulsation frequency of near-wall buoyant diffusion flames[J]. Journal of Tsinghua University(Science and Technology). 2026, 66(1): 92-99 https://doi.org/10.16511/j.cnki.qhdxxb.2026.27.008
中图分类号: X928.7   

参考文献

1
LI Y J , LIAO Y T T . Numerical study of flame spread in a narrow flow duct in microgravity-effects of flow confinement and radiation reflection[J]. Combustion and Flame, 2022, 235, 111714.
2
ZEINALI D , VERSTOCKT S , BEJI T , et al. Experimental study of corner fires-Part Ⅰ: Inert panel tests[J]. Combustion and Flame, 2018, 189, 472- 490.
3
HU L H , HU J J , DE RIS J L . Flame necking-in and instability characterization in small and medium pool fires with different lip heights[J]. Combustion and Flame, 2015, 162 (4): 1095- 1103.
4
HAMINS A , YANG J C , KASHIWAGI T . An experimental investigation of the pulsation frequency of flames[J]. Symposium (International) on Combustion, 1992, 24 (1): 1695- 1702.
5
POREH M , GARRAD G . A study of wall and corner fire plumes[J]. Fire Safety Journal, 2000, 34 (1): 81- 98.
6
ZHANG X L , HU L H , ZHANG X C , et al. Experimental investigation and analysis of flame height transition and air entrainment of near-wall rectangular-source fires at various distances[J]. Proceedings of the Combustion Institute, 2021, 38 (3): 4505- 4513.
7
ZHANG X L , HU L H , DELICHATSIOS M A , et al. Experimental study on flame morphologic characteristics of wall attached non-premixed buoyancy driven turbulent flames[J]. Applied Energy, 2019, 254, 113672.
8
ZHANG X L , FANG X , MIAO Y L , et al. Experimental study on pulsation frequency of free-, wall- and corner buoyant turbulent diffusion flames[J]. Fuel, 2020, 276, 118022.
9
TANG F , HU L H , WANG Q , et al. Flame pulsation frequency of conduction-controlled rectangular hydrocarbon pool fires of different aspect ratios in a sub-atmospheric pressure[J]. International Journal of Heat and Mass Transfer, 2014, 76, 447- 451.
10
ZHAO K , CHEN W , LI S T , et al. The effect of fire-wall distance on the flame attachment characteristics and flame height of near-wall fires[J]. Journal of Building Engineering, 2024, 98, 111292.
11
HU L H , PENG W , HUO R . Critical wind velocity for arresting upwind gas and smoke dispersion induced by near-wall fire in a road tunnel[J]. Journal of Hazardous Materials, 2008, 150 (1): 68- 75.
12
WAN H X , JI J , LI K Y , et al. Effect of air entrainment on the height of buoyant turbulent diffusion flames for two fires in open space[J]. Proceedings of the Combustion Institute, 2017, 36 (2): 3003- 3010.
13
万华仙. 不同受限条件下双方形对称火源相互作用燃烧行为研究[D]. 合肥: 中国科学技术大学, 2018.
WAN H X. Interaction behaviors of two symmetrical square fires under different confined conditions[D]. Hefei: University of Science and Technology of China, 2018. (in Chinese)
14
GAO W , SUN Y N , LIU N A , et al. Flame interaction effects on the flame structure of twin parallel rectangular fires[J]. Fire Safety Journal, 2025, 154, 104387.
15
OTSU N . A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9 (1): 62- 66.
16
LIN Z M , ZHAO K , LI S T , et al. Effect of inclination angle on the pulsation frequency of syngas jet fire[J]. International Journal of Hydrogen Energy, 2023, 48 (9): 3690- 3701.
17
HOU S Y , ZHANG B , XING L , et al. 3D modelling and turbulence analysis of multiple pool fires: Capturing synergistic effects and identifying optimal models[J]. International Journal of Thermal Sciences, 2025, 210, 109652.
18
TIESZEN S R , O'HERN T J , SCHEFER R W , et al. Experimental study of the flow field in and around a one meter diameter methane fire[J]. Combustion and Flame, 2002, 129 (4): 378- 391.
19
MA L , NMIRA F , CONSALVI J L . Large Eddy Simulation of medium-scale methanol pool fires-effects of pool boundary conditions[J]. Combustion and Flame, 2020, 222, 336- 354.
20
ZUKOSKI E E , CETEGEN B M , KUBOTA T . Visible structure of buoyant diffusion flames[J]. Symposium (International) on Combustion, 1985, 20 (1): 361- 366.
21
朱华诚, 胡振启, 赵至善, 等. 不同侧壁高度油池火实验分析与模型建立[J]. 清华大学学报(自然科学版), 2023, 63 (10): 1512- 1519.
ZHU H C , HU Z Q , ZHAO Z S , et al. Experimental analyses and modeling of pool fires with different ullage heights[J]. Journal of Tsinghua University (Science and Technology), 2023, 63 (10): 1512- 1519.
22
ZHANG H D , XIA X , GAO Y . Instability transition of a jet diffusion flame in quiescent environment[J]. Proceedings of the Combustion Institute, 2021, 38 (3): 4971- 4978.
23
刘长春, 刘新磊, 周莎莎, 等. 火焰脉动在火灾领域相关研究进展[J]. 中国安全生产科学技术, 2018, 14 (3): 48- 56.
LIU C C , LIU X L , ZHOU S S , et al. Research progress on flame pulsation in fire field[J]. Journal of Safety Science and Technology, 2018, 14 (3): 48- 56.
24
JIANG X , LUO K H . Dynamics and structure of transitional buoyant jet diffusion flames with side-wall effects[J]. Combustion and Flame, 2003, 133 (1-2): 29- 45.
25
JIANG X , LUO K H . Spatial DNS of flow transition of a rectangular buoyant reacting free-jet[J]. Journal of Turbulence, 2001, 2, N15.
26
HU P , DELICHATSIOS M , TANG F , et al. Flame height and oscillation frequency of rectangular-source fires at different separation distances from a facade wall[J]. Proceedings of the Combustion Institute, 2024, 40 (1-4): 105239.
27
SATO H, AMAGAI K, ARAI M. Scale modeling of puffing frequencies in pool fires related with Froude number[M]//SAITO K. Progress in Scale Modeling: Summary of the First International Symposium on Scale Modeling (ISSM Ⅰ in 1988) and Selected Papers from Subsequent Symposia (ISSM Ⅱ in 1997 through ISSM Ⅴ in 2006). Dordrecht: Springer, 2008: 133-147.

基金

国家自然科学基金面上项目(52474231)
江苏省高等学校自然科学研究重大项目(23KJA620003)

版权

版权所有,未经授权,不得转载。
PDF(19902 KB)

Accesses

Citation

Detail

段落导航
相关文章

/