PDF(1269 KB)
PDF(1269 KB)
PDF(1269 KB)
基于信噪比评价的阈值优选小波去噪法
Wavelet de-noising method with threshold selection rules based on SNR evaluations
在汽车自动变速器台架试验中,需要对角加速度信号进行消噪滤波。小波阈值去噪是计算量较小、滤波效果较好的消噪手段,但采用不同的小波基匹配不同的阈值规则可能会对去噪效果产生影响。为探寻相对最优组合,该文构建了近似观测信号的仿真信号,然后对该信号做了去噪实验,计算信噪比(SNR)和均方根误差(RMSE), 并以此作为评价指标,从而得到相对最优的匹配组合,最后将该组合用于角加速度信号消噪处理过程,取得了较好的滤波效果。小波阈值去噪在处理含噪信号时具有效率较高、稳定性好、不易失真的特点; 使用SNR结合RMSE可以对任何消噪结果作客观评判; 不同的含噪信号,可能需要用到不同的小波基函数,同时匹配不同的阈值选取规则。
Acceleration signals from automotive automatic transmission bench tests need to be de-noised. Wavelet threshold de-noising requires a relatively small amount of computations and has better filtering. However, different wavelet basic functions and different threshold rules produce different noise signal de-noising results. Optimal matching parameters are found for simulated signals that approximate an observed signal through de-noising tests using the signal-to-noise ratio (SNR) and root-mean-square error (RMSE) of the de-noised signal as the evaluation index. The results are combined with the angular acceleration signal de-noise processing obtained in a bench test for the filtering. The wavelet transform de-noising is efficient, stable and not easily distorted when dealing with noise signals. The effect of the wavelet de-noising noisy signal can be evaluated using SNR combined with RMSE for the objective evaluation. Different signals may need to use different wavelet basis functions with different threshold rules.
台架 / 自动变速 / 消噪 / 阈值规则 / 信噪比 / 均方根误差 / 小波基函数
bench / automatic transmission / denoising / threshold rule / signal-to-noise ratio (SNR) / root-mean-square error (RMSE) / wavelet basis function
| [1] | Habeebullah A, ZHENG Quan, CHUNG Woowon. A Closed-Loop Drive-Train Model for HIL Test Bench [R]. SAE 2009-01-1139. 2009. |
| [2] | Cavina N, Olivi D, Corti E, et al. Development and Implementation of Hardware in the Loop Simulation for Dual Clutch Transmission Control Units [R]. SAE 2013-01-0816. 2013. |
| [3] | 马晓岩, 李广柱, 张贤达. 基于小波变换的雷达信噪比改善分析[J]. 清华大学学报: 自然科学版, 2003, 43(3): 422-424. MA Xiaoyan, LI Guangzhu, ZHANG Xianda. Improved radar signal to noise ratio method based on wavelet transforms[J]. Journal of Tsinghua University: Science and Technology, 2003, 43(3): 422-424. (in Chinese) |
| [4] | 魏云冰, 黄进, 黄建华. 基于小波包变换的电机测试信号去噪处理[J]. 电工技术学报, 2001, 16(5): 64-67. WEI Yunbing, HUANG Jin, HUANG Jianhua. Removing noises from signals of motor measurement by wavelet packet[J].Transactions of China Electrotechnical Society, 2001, 16(5): 64-67. (in Chinese) |
| [5] | 李中伟, 程丽, 佟为明. Symlets小波幅值算法研究[J]. 电力自动化设备, 2009, 29(3): 65-68. LI Zhongwei, CHENG Li, TONG Weiming. Study of Symlets wavelet amplitude algorithm[J]. Electric Power Automation Equipment, 2009, 22(1): 65-68. (in Chinese) |
| [6] | 吴昊, 鲁周迅. Symlets小波和子空间联合增强下的语音识别[J]. 计算机工程与应用, 2011, 47(5): 141-145. WU Hao, LU Zhouxun. Speech recognition based on combined enhancement of Symlets wavelet and subspace[J]. Computer Engineering and Applications, 2011, 47(5): 141-145. (in Chinese) |
| [7] | 谢杰成, 张大力, 徐文立. 一种小波去噪方法的几点改进[J]. 清华大学学报: 自然科学版, 2002, 42(9): 1269-1272. XIE Jiecheng, ZHANG Dali, XU Wenli. Several improvements for a wavelet denoising method[J]. Journal of Tsinghua University: Science and Technology, 2002, 42(9): 1269-1272. (in Chinese) |
| [8] | 孙延奎. 小波分析及其应用 [M]. 北京: 机械工业出版社, 2005. SUN Yankui. Wavelet Analysis and Application [M]. Beijing: Machinery Industry Press, 2005.(in Chinese) |
| [9] | 邱继征. 小波分析原理 [M]. 北京: 科学出版社, 2009. QIU Jizheng. The Principle of Wavelet Analysis [M]. Beijing: Science Press, 2009. (in Chinese) |
| [10] | 樊启斌. 小波分析[M]. 武汉: 武汉大学出版社, 2008. FAN Qibin. Wavelet Analysis [M]. Wuhan: Wuhan University Press, 2008. (in Chinese) |
| [11] | 张臣国. 小波分析在信号降噪中的应用研究 [D]. 成都: 电子科技大学, 2012. ZHANG Chenguo. Application of Wavelet Analysis in Signal Denoising [D]. Chengdu: University of Electronic Science and Technology, 2012. (in Chinese) |
| [12] | 冯有前. 数值分析[M]. 北京:清华大学出版社, 2005. FENG Youqian. Numerical Analysis [M]. Beijing: Tsinghua University Press, 2005.(in Chinese) |
| [13] | 齐翠丽. 基于小波阈值法和模极大值法的语音去噪算法研究 [D]. 秦皇岛: 燕山大学, 2012. QI Cuili. The Research of Speech Degoising Algorithm Based on Wavelet Threshold and the Modulus Maximum Value [D]. Qinhuangdao: Yanshan University, 2012. (in Chinese) |
| [14] | 孙斌, 周云龙, 关跃波, 等. 气液两相流压差波动信号小波去噪中阈值规则的确定[J]. 信号处理, 2006, 22(1): 96-99. SUN Bin, ZHOU Yunlong, GUAN Yuebo, et al.Confirmation of threshold rule in signal denosing of gas-liquid two-phase flow differential pressure fluctuation using wavelet transform[J]. Signal Processing, 2006, 22(1): 96-99. (in Chinese) |
/
| 〈 |
|
〉 |