改进的功率极化交叉熵舰船检测方法

游彪,杨健,叶春茂,宋建设

清华大学学报(自然科学版) ›› 2014, Vol. 54 ›› Issue (4) : 453-457.

PDF(1316 KB)
PDF(1316 KB)
清华大学学报(自然科学版) ›› 2014, Vol. 54 ›› Issue (4) : 453-457.

改进的功率极化交叉熵舰船检测方法

作者信息 +

Improved ship detection method based on span polarimetric cross entropy

Author information +
文章历史 +

摘要

针对极化交叉熵定义的缺陷,提出了一个新的替代参数。首先逐点计算各个像素与三种基本散射体之间的相似性参数,分析了目标与海杂波极化性质的差异,在此基础上对极化交叉熵重新定义。然后与功率相乘得到功率极化交叉熵。该参数既能反映目标与杂波像素功率的差异,也能反映极化性质的不同。最后,采用Parzen窗杂波拟合方法获得判决阈值。利用Radarsat-2数据进行实验比较,验证了所提参数用于CFAR舰船检测的有效性。

Abstract

The paper describes a parameter to replace the polarimetric cross entropy (PCE) for improved ship detection. The method calculates the similarity parameters between the target and three canonical scattering mechanisms. The different scattering mechanisms between the target and cluster are analyzed based on the similarity parameter. Then, the PCE is redefined based on the similarity parameter. The span polarimetric cross entropy (SPCE) is calculated to describe the span and polarimetric difference between the target and a cluster. Finally, a Parzen window is used to estimate the cluster distribution. The effectiveness of this parameter is demonstrated using the Radarsat-2 data for CFAR ship detection.

关键词

合成孔径雷达 / 极化 / 检测

Key words

synthetic aperture radar / polarization / detection

引用本文

导出引用
游彪,杨健,叶春茂,宋建设. 改进的功率极化交叉熵舰船检测方法[J]. 清华大学学报(自然科学版). 2014, 54(4): 453-457
Biao YOU,Jian YANG,Chunmao Yeh,Jianshe Song. Improved ship detection method based on span polarimetric cross entropy[J]. Journal of Tsinghua University(Science and Technology). 2014, 54(4): 453-457

参考文献

[1] Novak L M, Burl M C. Optimal speckle reduction in polarimetric SAR imagery [J]. IEEE Trans on AES, 1990, 26(2): 293-305.
[2] Touzi R, Charbonneau F, Hawkins R K, et al. Ship-sea contrast optimization when using polarimetric SARs [C]// Proceedings of International Geoscience and Remote Sensing Symposium. Sydney, Australia: IEEE Press, 2001: 426-428.
[3] Liu C, Vachon P W, Geling G W. Improved ship detection with airborne polarimetric SAR data[J]. Can J Remote Sensing, 2005, 31(1): 122-131.
[4] Chen J, Chen Y L, Yang J. Ship detection using polarization cross-entropy[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 723-727.
[5] Huynen J R. Phenomenological Theory of Radar Target [D]. Delft Netherlands: Technical University, 1970.
[6] Cloude S R, Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Trans Geosci Remote Sens, 1996, 34(2): 498-518.
[7] Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Trans Geosci Remote Sens, 1997, 35(1): 68-78.
[8] Yang J, Peng Y N, Lin S M. Similarity between two scattering matrices[J].Electronics Letters, 2001, 37(3): 193-194.
[9] An W T, Zhang W J, Yang J, et al.Similarity between two targets and its application to polarimetric target detection for sea area [C]// Progress in Electromagnetics Research Symposium, MA, USA: Cambridge, 2008: 515-520.
[10] Cameron W L, Youssef N N, Leung L K. Simulated polarimetric signatures of primitive geometrical shapes[J]. IEEE Trans Geosci Remote Sens, 1996, 34(3): 793-803.
[11] 崔一. 基于SAR 图像的目标检测研究 [D]. 北京: 清华大学, 2011. CUI Yi. Study onTarget Detection in Synthetic Aperture Radar Images [D]. Beijing: Tsinghua University, 2011. (in Chinese)
[12] Yang J, Zhang H, Yamaguchi Y. GOPCE based approach to ship detection[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 1089-1093.

基金

国家自然科学基金面上项目 (41171317);国家自然科学基金重点项目 (61132008);清华大学海洋培育基金 (2011Z07125)

PDF(1316 KB)

Accesses

Citation

Detail

段落导航
相关文章

/