PDF(1265 KB)
PDF(1265 KB)
PDF(1265 KB)
湍流预混射流火焰直接模拟中入口条件的确定
Inlet conditions for direct numerical simulations of turbulent premixed jet flames
该文对甲烷-空气湍流平面射流预混火焰进行了直接数值模拟。射流入口的扰动速度数据依据给定的湍流能谱生成,利用入口处的湍流积分长度尺度和湍动能确定了能谱的峰值波数。计算结果给出了气体温度、质量分数和涡量模的瞬态分布,表明在剪切层内随着旋涡尺度的增大出现了拟序结构。化学反应受到湍流的作用,瞬时反应面出现了明显的皱折,反应面积增大。沿射流中心线,湍动能逐渐衰减,温度脉动和甲烷质量分数脉动均方根值则逐渐增大。
Methane-air turbulent premixed planar jet flames are simulated using direct numerical simulations. A fluctuating velocity field at the jet inflow boundary is generated based on a prescribed turbulent energy spectrum. The peak wavenumber in the energy spectrum is determined from the turbulent integral length scale and turbulent kinetic energy at the jet inlet. The model also gives the instantaneous distributions of the gas temperature, species concentrations, and vorticity. The results show that coherent structures in the shear layer gradually appear as the eddy sizes increase. The chemical reactions are affected by the turbulence and the instantaneous reaction surface is quite wrinkled with its area increase. The turbulent kinetic energy gradually decreases, while the root mean squares of the temperature and methane concentration fluctuations increase along the jet centerline.
湍流平面射流火焰 / 预混火焰 / 直接数值模拟 / 入口条件 / 速度扰动
turbulent planar jet flame / premixed flame / direct numerical simulation / inlet condition / fluctuating velocity
| [1] | Klein M, Sadiki A, Janicka J. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations[J]. Journal of Computational Physics, 2003, 186: 652-665. |
| [2] | Sankaran R, Hawkes E R, Chen J H, et al.Structure of a spatially developing turbulent lean methane-air Bunsen flame[J]. Proceedings of the Combustion Institute, 2007, 31: 1291-1298. |
| [3] | Klein M, Sadiki A, Janicka J. Investigation of the influence of the Reynolds number on a plane jet using direct numerical simulation[J]. International Journal of Heat and Fluid Flow, 2003, 24: 785-794. |
| [4] | Lee S, Lele S K, Moin P. Simulation of spatially evolving turbulence and the applicability of Taylor's hypothesis in compressible flow[J]. Physics of Fluids A, 1992, 4: 1521-1530. |
| [5] | Le H, Moin P, Kim J. Direct numerical simulation of turbulent flow over a backward-facing step[J]. Journal of Fluid Mechanics, 1997, 330: 349-374. |
| [6] | Stanley S A, Sarkar S, Mellado J P. A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[J]. Journal of Fluid Mechanics, 2002, 450: 377-407. |
| [7] | Hawkes E R, Sankaran R, Sutherland J C, et al.Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal CO/H2kinetics[J]. Proceedings of the Combustion Institute, 2007, 31: 1633-1640. |
| [8] | Kennedy C A, Carpenter M H. Several new numerical methods for compressible shear-layer simulations[J]. Applied Numerical Mathematics, 1994, 14: 397-433. |
| [9] | Kennedy C A, Carpenter M H, Lewis R H. Low-storage, explicit Runge-Kutta scheme for the compressible Navier-Stokes equations[J]. Applied Numerical Mathematics, 2000, 35: 177-219. |
| [10] | Poinsot T, Veynante D. Theoretical and Numerical Combustion[M]. 2 Ed. Philadelphia, PA, USA: Edwards, 2005. |
| [11] | Gu X J, Hao M Z, Lawes M, et al.Laminar burning velocity and Markstein lengths of methane-air mixtures[J]. Combustion and Flame, 2000, 121: 41-58. |
| [12] | Sutherland J C, Kennedy C A. Improved boundary conditons for viscous, reacting compressible flows[J]. Journal of Computational Physics, 2003, 191: 502-524. |
| [13] | Sutherland J C. Evaluation of Mixing and Reacting Models for Large-Eddy Simulation of Nonpremixed Combustion Using Direct Numerical Simulation [D]. Salt Lake City, UT, USA: University of Utah, 2004. |
| [14] | Haworth D C, Poinsot T J. Numerical simulations of Lewis number effects in turbulent premixed flames[J].Journal of Fluid Mechanics, 1992, 244: 405-436. |
| [15] | Rogallo R S. Numerical Experiments in Homogeneous Turbulence, NASA-TM-81315 [R]. Moffett Field, CA, USA: NASA Ames Research Center, 1981. |
/
| 〈 |
|
〉 |