PDF(1221 KB)
PDF(1221 KB)
PDF(1221 KB)
剩余污泥低温热水解中试
Pilot study of the thermal hydrolysis of excess waste sludge at low temperatures
中国污泥有机物质量比低,厌氧消化速率慢、产气少, 60℃左右的热水解是改善措施之一。该文在热水解罐中进行了剩余污泥低温热水解的中试研究,采用热泵供热。对水力停留时间(HRT)、 温度(T)、 污泥含固率和有机物质量比(CVSS/CSS)等对剩余污泥低温热水解的影响以及重要性进行了分析。试验结果表明: 低温热水解的最佳工艺条件为: HRT为1 d, 温度54~60℃,污泥含固率3%。加碱可以促进水解,当污泥含固率5%时,调节pH到10可使VSS去除率和有机物溶出率分别增加46.8%和100%。正交试验结果表明: 温度、污泥含固率和有机物质量比都是热水解的关键影响因素,各因素对VSS去除率和有机物溶出率影响的重要性顺序一致,由大到小的顺序为: 污泥含固率、温度、有机物质量比。在最佳工况下,剩余污泥低温热水解后进行中温(35℃)厌氧消化,消化时间10d的情况下,沼气产量比未低温热水解时增加44%。
With low organic matter content, sludge in China has low reaction rates and low biogas production rates. Thermal hydrolysis at about 60 ℃ will enhance the digestion. Thermal hydrolysis of excess sludge at low temperatures was conducted in thermal tanks with a heat pump as a heat source. The effects of hydraulic retention time (HRT), temperature (T), solid content and organic matter ratio (CVSS/CSS) of the sludge on thermal hydrolysis were analyzed. The results showed that the optimal operating conditions for thermal hydrolysis was HRT=1 d, T=54-60℃, and a solid content=3%. Adding alkalis enhanced the hydrolysis, with a solid content of 5%, NaOH was added to increase the pH to 10 to increase the VSS removal rate by 46.8% and the solution rate of organic substances by 100%. Orthogonal experiments indicated that the temperature, solid content and CVSS/CSS were all crucial to the VSS removal rate and the solution rate of the organic matter. The solid content had the largest effect followed by the temperature and CVSS/CSS. The biogas production rate of the sludge hydrolyzed with optimal conditions during 10 days anaerobic digestion at 35℃ was 44% higher than that of sludge without hydrolysis.
剩余污泥 / 热水解 / 中温厌氧消化 / 正交试验 / 含固率
excess waste sludge / thermal hydrolysis / anaerobic digestion / orthogonal experiment / solid content
| [1] | 钱靖华, 田宁宁, 余杰, 等. 城镇污水污泥厌氧消化技术及能源消耗[J]. 给水排水, 2010, 36: 102-104. QIAN Jinghua, TIAN Ningning, YU Jie, et al.Anaerobic digestion and energy consumption of municipal waste sludge[J]. Water and Waste Water, 2010, 36: 102-104. (in Chinese) |
| [2] | 康晓鹍, 王世和. 城市污水处理厂污泥沼气资源化利用[J]. 中国沼气, 2009, 27(2): 35-37. KANG Xiaokun, WANG Shihe. Resourcerizing of sludge from municipal wastewater plant by anaerobic digestion[J]. China Biogas, 2009, 27(2): 35-37. (in Chinese) |
| [3] | Frolund B, Palmgren B, Keiding R, et al.Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8): 1749-1758. |
| [4] | Higgins M J, Novak J T, Novak J T. Characterization of exocellular protein and its role in bio-flocculation[J]. Journal of Environmental Engineering-ASCE, 1997, 123(5): 479-485. |
| [5] | Novak J T, Sadler M E, Murty S N . Mechanisms of floc destruction during anaerobic digestion and the effect on conditioning and dewatering of biosolids[J]. Water Research, 2003, 37(13): 3136-3144. |
| [6] | Appels L, Baeyens J, Degreve J, et al.Principles and potential of the anaerobic digestion of waste-activated sludge[J]. Progress in Energy and Combustion Science, 2008, 34(6): 755-781. |
| [7] | Pavlostathis S G, Giraldogomez E. Kinetic of anaerobic treatment[J]. Water Science and Technology, 1991, 24(8): 35-59. |
| [8] | Pavlostathis S G, Giraldogomez E. Kinetic of anaerobic treatment—A critical review[J]. Critical Reviews in Environment Control, 1991, 21(5-6): 411-490. |
| [9] | Pavlostathis S, Gosset J. A kinetic model for anaerobic digestion of biological sludge[J]. Biotechnology and Bioengineering, 1986, 27(5): 1519-1530. |
| [10] | Haug R T, Stuckey D C, Gossett J M. Effect of thermal pretreatment on digestibility and de-waterrability of organic sludge[J]. Journal Water Pollution Control Federation, 1978, 50(1): 73-85. |
| [11] | Pinnekamp J. Effect of thermal pretreatment of sewage- sludge on anaerobic-digestion[J]. Water Science and Technology, 1989, 21(4-5): 97-108. |
| [12] | Takashima M. Examination on process configurations incorporating thermal treatment for anaerobic digestion of sewage sludge[J]. Journal of Environmental Engineering- ASCE, 2008, 134(7): 543-549. |
| [13] | Carrere H, Bougrier C, Castets D, et al.Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment[J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 2008, 43(13): 1551-1555. |
| [14] | 张洪林, 范丽华, 曹春艳, 等. 高温预处理对污泥厌氧消化影响的研究[J]. 辽宁师范大学学报: 自然科学版, 2007, 30(3): 336-338. ZHANG Honglin, FAN Lihua, CAO Chunyan, et al.Studies on effect of pretreatment in high temperature on anaerobic digestion of sludge[J]. Journal of Liaoning Normal University: Natural Science Edition, 2007, 30(3): 336-338. (in Chinese) |
| [15] | Perez-Elvira S I, Ferreira L C, Donoso-Bravo A, et al. Full-stream and part-stream ultrasound treatment effect on sludge anaerobic digestion[J]. Water Science and Technology, 2010, 61(6): 1363-1372. |
| [16] | Hariklia N G, Umur Y, Ioannis V S, et al.Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature[J]. Water Research, 2003, 37: 4561-4572. |
| [17] | Borges E S M, Chernicharo C A L. Effect of thermal treatment of anaerobic sludge on the bioavailability and biodegradability characteristics of the organic fraction[J]. Brazilian Journal of Chemical Engineering, 2009, 26(3): 469-480. |
| [18] | Wang Q, Noguchi C, Hara Y, et al.Studies on anaerobic digestion mechanism: Influence of pretreatment temperature on biodegradation of waste activated sludge[J]. Environment Technology, 1997, 18: 999-1008. |
| [19] | 吴静, 赵鹏娟, 田磊, 等. 高温污泥厌氧消化器的启动[J]. 环境科学, 2011, 32(2): 520-523. WU Jing, ZHAO Pengjuan, TIAN Lei, et al.Start-up of a thermophilic anaerobic sludge digester[J]. Environmental Science, 2011, 32(2): 520-523. (in Chinese) |
| [20] | Rocher M, Roux G, Goma G, et al.Excess sludge reduction in activated sludge processes by integrating biomass alkaline heat treatment[J]. Water Science and Technology, 2001, 44: 437-444. |
| [21] | Neyens E, Baeyens J. A review of thermal sludge pre-treatment processes to improve dewaterability[J]. Journal of Hazardous Materials, 2003, 98(1-3): 51-67. |
| [22] | Ge H D, Jensen P D, Batstone D J. Pre-treatment mechanisms during thermophilic-mesophilic temperature phased anaerobic digestion of primary sludge[J]. Water Research, 2010, 44(1): 123-130. |
| [23] | 苑宏英, 张华星, 陈银广, 等. pH对剩余污泥厌氧发酵产生的COD、 磷及氨氮的影响[J]. 环境科学, 2006, 27(7): 1358-1361. YUAN Hongying, ZHANG Huaxing, CHEN Yinguang, et al.Impact of pH on the generation of COD, phosphorous and ammonia-nitrogen during the anaerobic fermentation of excess activated sludge[J]. Environmental Science, 2006, 27(7): 1358-1361. (in Chinese) |
| [24] | 欧阳云凤. 剩余活性污泥水解工艺的研究 [D]. 天津: 天津大学, 2008: 37. OUYANG Yunfeng. Study on the Hydrolysis of Residual Activated Sludge [D]. Tianjin: Tianjin University, 2006. (in Chinese) |
| [25] | Ge H Q, Jensen P D, Batstone D J. Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge[J]. Journal of Hazardous Materials, 2011, 187(1-3), 355-361. |
| [26] | Bolzonella D, Pavan P, Zanette M, et al.Two-phase anaerobic digestion of waste activated sludge: Effect of an extreme thermophilic prefermentation[J]. Industrial and Engineering Chemistry Research, 2007, 46(21), 6650-6655. |
| [27] | Lu J, Gavala H N, Skiadas I V, et al.Improving anaerobic sewage sludge digestion by implementation of a hyper-thermophilic prehydrolysis step[J]. Journal of Environmental Management, 2008, 88(4): 881-889. |
/
| 〈 |
|
〉 |