面向空间网络中任务发生的时间和空间随机性, 建立中继卫星系统服务模型, 并提出了一种动态的空间任务调度方法。基于中继卫星天线资源的差异, 对2种天线资源分别建模, 构建中继卫星系统的多星多天线服务模型。利用空间网络拓扑动态变化的特点, 结合空间任务的多优先级和容忍延时特性, 提出一种基于种群联合进化的资源分配算法。仿真结果表明:与贪婪算法相比, 种群联合进化算法能够多完成18.7%的空间任务, 有效提高了中继卫星系统的任务完成能力。
Abstract
A dynamic scheduling method was developed for tracking and data relay satellite systems (TDRSS) to maximize use of the space network (SN). The algorithm includes a service model for multi-satellite and multi-antenna TDRSS for satellites with constellation formations and two types of servable antennas. A population joint evolution algorithm was developed for the random temporal occurrences and spatial distributions of the tasks based on priority differences and time-delay tolerances. The dynamic topology of the SN is separated into the multi-satellite and multi-antenna service model and the population joint evolution algorithm to provide better service capabilities. Simulations show that the average scheduling failure is 18.7% less than with the greedy algorithm.
关键词
中继卫星系统 /
空间任务 /
资源分配 /
动态调度
Key words
tracking and data relay satellite system (TDRSS) /
spatial task /
resource allocation /
dynamic scheduling
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] NASA. Tracking and data relay satellite (TDRS) [EB/OL]. [2013-11-13]. https://www.spacecomm.nasa.gov/spacecomm/programs/tdrss/default.cfm.
[2] NASA. Space communications program elements [EB/OL]. [2013-11-13]. https://www.spacecomm.nasa.gov/spacecomm/programs/default.cfm.
[3] Zillig D, McOmber R, Fox N. TDRSS demand access service: Application of advanced technology to enhance user operations [J]. SpaceOps, 1998, 1: 1-11.
[4] Gitlin T A, Kearns W, Horne W D. The NASA space network demand access system (DAS) [C]//Proceedings of SpaceOps 2002. Houston, TX, USA: SpaceOps Press, 2002: 1-10.
[5] Rojanasoonthon S, Bard J, Reddy S. Algorithms for parallel machine scheduling: A case study of the tracking and date delay satellite system [J]. Journal of the Operational Research Society, 2003, 54 : 806-821.
[6] FANG Yanshen, CHEN Yingwu. Constraint programming model of TDRSS single access link scheduling problem [C]//2006 International Conference on Machine Learning and Cybernetics. Dalian, China: IEEE Press, 2006: 948-951.
[7] WEI Zheng, XIN Meng, HE Huan. Genetic algorithm for TDRS communication scheduling with resource constraints [C]//2008 International Conference on Computer Science and Software Engineering. Shanghai, China: IEEE Press, 2008: 893-897.
[8] LI Yingxian, FANG Qing, TAN Jianbo. Application of relay satellite scheduling based on STK/X [C]//2011 IEEE CIE International Conference on Radar. Chengdu, China: IEEE Press, 2011: 288-291.
[9] CHENG Siwei, ZHANG Hui, WANG Chao, et al. Operation planning modeling of tracking and data relay satellite: A sketch [C]//Intelligent Computation Technology and Automation 2009. Changsha, China: IEEE Press, 2009: 144-147.
[10] NASA. TDRSS information package [EB/OL]. [2013-03-12]. http://msp.gsfc.nasa.gov/TUBE/techinfo.htm.
[11] LIN Peng, KUANG Linling, CHEN Xiang, et al. Adaptive subsequence adjustment with evolutionary asymmetric path-relinking for TDRSS scheduling [J]. Journal of Systems Engineering and Electronics, 2014, 25 (5): 800-810.
[12] YAN Jian, ZHANG Yuan, CAO Zhigang. Reverse detection based QoS routing algorithm for LEO satellite constellation networks [J]. J Tsinghua Univ (Sci and Tech), 2011, 16 (4): 358-363.