PEM老炼过程中的温度闭环控制系统

白冰, 王伟明, 李青峰, 李路明

清华大学学报(自然科学版) ›› 2016, Vol. 56 ›› Issue (3) : 294-298.

PDF(2376 KB)
PDF(2376 KB)
清华大学学报(自然科学版) ›› 2016, Vol. 56 ›› Issue (3) : 294-298. DOI: 10.16511/j.cnki.qhdxxb.2016.21.020
自动化

PEM老炼过程中的温度闭环控制系统

  • 白冰, 王伟明, 李青峰, 李路明
作者信息 +

Closed-loop temperature control system for a PEM during burn-in

  • BAI Bing, WANG Weiming, LI Qingfeng, LI Luming
Author information +
文章历史 +

摘要

当前,老炼仍被广泛应用于塑封微电路(PEM)的可靠性保证。为了解决老炼过程中存在的热失控及温度不一致的问题, 该文设计了一套温度闭环控制系统。在由老炼箱自身装置提供箱内基础温度的基础上, 设计的温度闭环控制系统以每个封装夹具内的微环境为控制对象, 采用模糊自适应算法, 最优配置比例积分(PI)控制器的控制参数, 最终驱动执行器, 对被老炼器件及时加热或散热。通过试验证实, 老炼过程中加入温度闭环控制系统后, 被测器件的温度在更短的时间内(20 min)达到稳态, 稳态精度控制在1℃以内, 且被测器件温度的差异由2℃降低到基本一致。而后, 当系统采用模糊自适应控制算法后, 系统的动态响应时间更短, 抗干扰能力更强。因此, 该系统达到了防止器件热失控及保证不同器件间温度一致的目的。

Abstract

The plastic encapsulated microcircuits (PEM) burn-in method helps guarantee the reliability of PEM. Thermal runaway and uneven temperatures between different devices during burn-in are controlled by a closed-loop temperature control system. The control system adjusts the temperature of each burn-in socket relative to the oven temperature using a fuzzy adaptive algorithm to configure the control parameters of the PI controller that drives the heating or cooling actuators. The device temperature more quickly achieves steady state (20 min) with steady state errors of less than 1℃ and the temperature differences between the tested devices are reduced by 2℃ so that the temperature are almost the same with the closed-loop temperature control system. The fuzzy adaptive algorithm makes the system dynamic response much faster with stronger anti-interference ability. Thus, this system prevents thermal runaway and makes the temperatures equal between the different tested devices.

关键词

塑封微电路 / 老炼 / 可靠性 / 温度闭环控制

Key words

plastic encapsulated microcircuits (PEM) / burn-in / reliability / closed-loop temperature controller

引用本文

导出引用
白冰, 王伟明, 李青峰, 李路明. PEM老炼过程中的温度闭环控制系统[J]. 清华大学学报(自然科学版). 2016, 56(3): 294-298 https://doi.org/10.16511/j.cnki.qhdxxb.2016.21.020
BAI Bing, WANG Weiming, LI Qingfeng, LI Luming. Closed-loop temperature control system for a PEM during burn-in[J]. Journal of Tsinghua University(Science and Technology). 2016, 56(3): 294-298 https://doi.org/10.16511/j.cnki.qhdxxb.2016.21.020
中图分类号: TN406   

参考文献

[1] Radisic V, Leong K M K H, Sarkozy S, et al. 220-GHz solid-state power amplifier modules[J]. IEEE Journal of Solid-State Circuit, 2012, 47(10):2291-2297.
[2] Johnson L A. Laser diode burn-in and reliability testing[J]. IEEE Communication Magazine, 2006, 44(2):4-7.
[3] Cha J H, Finlelstein M. Burn-in for systems operating in a shock environment[J]. IEEE Transaction on Reliability, 2011, 60(4):721-728.
[4] Tsai CC, Tseng ST, Balakrishnan N. Optimal burn-in policy for highly reliable products using gamma degradation process[J]. IEEE Transaction on Reliability, 2011, 60(1):234-245.
[5] Vassighi A,Semenov O, and Sachdev M. CMOS IC technology scaling and its impact on burn-in[J]. IEEE Transactions onDevice and Materials Reliability, 2004, 4:208-221.
[6] Kao W C, Chuang W S, LinH T, et al. DFT and minimum leakage pattern generation for static power reduction during test and burn-in[J]. IEEE Transcation on Very Large Scale Integration System, 2010, 18(3):392-400.
[7] Oleg S, Arman V, Manoj S, et al. Effect of CMOS technology scaling on thermal management during burn-in[J]. IEEE transactions on semiconductor manufacturing, 2003, 16(4):686-695.
[8] Mesut M, Hamid M and Kaushik R. A leakage control system for thermal stability during burn-in test[C]//Test Conference, 2005. Proceedings. ITC 2005. IEEE International. Austin, TX, USA:IEEE Press, 2005:1-10.
[9] Vassighi A, Sachdev M. Thermal runaway in integrated circuits[J]. IEEE Transcation on Device and Materials Reliability, 2006, 6(2):300-305.
[10] Riordan WC, Miller R, PierreS ER. Reliability improvement and burn in optimization through the use of die levelpredictive modeling[C]//Reliability Physics Symposium, 2005. Proceedings. 43rd Annual. 2005 IEEE International. San Jose, CA, USA:IEEE Press, 2005:435-445.
[11] Forster J, Lopez C. Junction temperature during burn-in:how variable is it and how can we control it[C]//Semiconductor Thermal Measurement and Management Symposium,2007, 23rd Annual IEEE. San Jose, CA,USA:IEEE Press, 2007:168-173.
[12] Tadayon P. Thermal challenges during microprocessor testing[J]. Intel Technol J, 2000, 4(3):1-8.

PDF(2376 KB)

Accesses

Citation

Detail

段落导航
相关文章

/