基于双向门限递归单元神经网络的维吾尔语形态切分

哈里旦木·阿布都克里木, 程勇, 刘洋, 孙茂松

清华大学学报(自然科学版) ›› 2017, Vol. 57 ›› Issue (1) : 1-6.

PDF(1041 KB)
PDF(1041 KB)
清华大学学报(自然科学版) ›› 2017, Vol. 57 ›› Issue (1) : 1-6. DOI: 10.16511/j.cnki.qhdxxb.2017.21.001
计算机科学与技术

基于双向门限递归单元神经网络的维吾尔语形态切分

  • 哈里旦木·阿布都克里木, 程勇, 刘洋, 孙茂松
作者信息 +

Uyghur morphological segmentation with bidirectional GRU neural networks

  • ABUDUKELIMU Halidanmu, CHENG Yong, LIU Yang, SUN Maosong
Author information +
文章历史 +

摘要

以维吾尔语为代表的低资源、形态丰富语言的信息处理对于满足“一带一路”语言互通的战略需求具有重要意义。这类语言通过组合语素来表示句法和语义关系,因而给语言处理带来严重的数据稀疏问题。该文提出基于双向门限递归单元神经网络的维吾尔语形态切分方法,将维吾尔词自动切分为语素序列,从而缓解数据稀疏问题。双向门限递归单元神经网络能够充分利用双向上下文信息进行切分消歧,并通过门限递归单元有效处理长距离依赖。实验结果表明,该方法相比主流统计方法和单向门限递归单元神经网络获得了显著的性能提升。该方法具有良好的语言无关性,能够用于处理更多的形态丰富语言。

Abstract

Information processing of low-resource, morphologically-rich languages such as Uyghur is critical for addressing the language barrier problem faced by the One Belt and One Road (B&R) program in China. In such languages, individual words encode rich grammatical and semantic information by concatenating morphemes to a root form, which leads to severe data sparsity for language processing. This paper introduces an approach for Uyghur morphological segmentation which divides Uyghur words into sequences of morphemes based on bidirectional gated recurrent unit (GRU) neural networks. The bidirectional GRU exploits the bidirectional context to resolve ambiguities and model long-distance dependencies using the gating mechanism. Tests show that this approach significantly outperforms conditional random fields and unidirectional GRUs. This approach is language-independent and can be applied to all morphologically-rich languages.

关键词

双向门限递归单元 / 神经网络 / 维吾尔语 / 形态切分

Key words

bidirectional gated recurrent unit / neural network / Uyghur / morphological segmentation

引用本文

导出引用
哈里旦木·阿布都克里木, 程勇, 刘洋, 孙茂松. 基于双向门限递归单元神经网络的维吾尔语形态切分[J]. 清华大学学报(自然科学版). 2017, 57(1): 1-6 https://doi.org/10.16511/j.cnki.qhdxxb.2017.21.001
ABUDUKELIMU Halidanmu, CHENG Yong, LIU Yang, SUN Maosong. Uyghur morphological segmentation with bidirectional GRU neural networks[J]. Journal of Tsinghua University(Science and Technology). 2017, 57(1): 1-6 https://doi.org/10.16511/j.cnki.qhdxxb.2017.21.001
中图分类号: TP391.2   

参考文献

"[1] Orhun M, Tanguǎ C, Adal? E. Rule based analysis of the Uyghur nouns[J]. International Journal on Asian Language Processing, 2009, 19(1):33-43. [2] Sami V, Peter S, Arne G et al. Morfessor 2.0:Python Implementation and Extensions for Morfessor Baseline, ISBN 978-952-60-5501-5[R]. Helsinki:Aalto University, 2013. [3] Lafferty J, McCallum A, Pereira F. Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning. Williamstown, MA, USA:Morgan Kaufmann, 2001:282-289. [4] Ruokolainen T, Kohonen O, Virpioja S et al. Supervised morphological segmentation in a low-resource learning setting using conditional random fields[C]//Proceeding of the Seventeenth Conference on Computational National Language Learning. Sofia, Bulgaria:Association for Computational Linguistics, 2013:8-9. [5] Aisha B, SUN Maosong. A statistical method for Uyghur tokenization[C]//International Conference on Natural Language Processing and Knowledge Engineering. Dalian:IEEE, 2009:24-27. [6] 买热哈巴·艾力, 姜文斌, 王志洋, 等. 维吾尔语词法分析的有向图模型[J]. 软件学报, 2012, 23(12):3115-3129. Aili M, JIANG Wenbin, WANG Zhiyang, et al. Directed graph model of Uyghur morphological analysis[J]. Journal of Software, 2012, 23(12):3115-3129. (in Chinese) [7] Wumaier A, Tian S. Conditional random fields combined FSM stemming method for Uyghur[C]//International Conference on Computer Science and Information Technology. Beijing:IEEE, 2009:8-11. [8] Ablimit M, Kawahara T, Pattar A, et al. Stem-affix based Uyghur morphological analyzer[J]. International Journal of Future Generation Communication and Networking, 2016, 9(2):59-72. [9] Chung J, Gulcehre C, Cho K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[Z/OL]. (2014-12-11). https://arxiv.org/abs/1412.3555. [10] Chen X, Qiu X, Zhu C et al. Long short-term memory neural networks for Chinese word segmentation[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal:Association for Computational Linguistics, 2015:17-21. [11] Yao Y, Huang Z. Bi-directional LSTM recurrent neural network for Chinese word segmentation[Z/OL]. (2016-02-16). http://arxiv.org/abs/1602.04874. [12] Morita H, Kawahara D, Kurohashi S. Morphological analysis for unsegmented languages using recurrent neural network language model[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal:Association for Computational Linguistics, 2015:17-21. [13] Wang L, Cao Z, Xia Y, et al. Morphological segmentation with window ISTM neural networks[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Phoenix, AZ, USA:Association for the Advancement of Artificial Intelligence, 2016:2842-2848. [14] Wang P, Qian Y, Soong F, et al. Part-of-speech tagging with bidirectional long short-term memory recurrent neural network[Z/OL]. (2015-10-21). http://arxiv.org/abs/1510.06168. [15] Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on neural networks, 1994, 5(2):157-166. [16] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [17] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[Z/OL]. (2014-09-01). https://arxiv.org/abs/1409.0473 [18] Schuster M, Paliwal K. Bidirectional recurrent neural networks[J]. IEEE Transactions on signal processing, 1997, 45(11):2673-2681. [19] Graves A, Jaitly N, Mohamed A. Hybrid speech recognition with deep bidirectional ISTM[C]//2013 IEEE Workshop on Automatic Speech Recognition and Understanding. Olomouc, Czech:IEEE, 2014:8-12."

PDF(1041 KB)

Accesses

Citation

Detail

段落导航
相关文章

/