毫米波无线通信中的定时跟踪方案

牛勇, 冯子奇, 李勇, 金德鹏, 苏厉

清华大学学报(自然科学版) ›› 2017, Vol. 57 ›› Issue (1) : 61-66.

PDF(1173 KB)
PDF(1173 KB)
清华大学学报(自然科学版) ›› 2017, Vol. 57 ›› Issue (1) : 61-66. DOI: 10.16511/j.cnki.qhdxxb.2017.21.012
电子工程

毫米波无线通信中的定时跟踪方案

  • 牛勇1, 冯子奇2, 李勇2, 金德鹏2, 苏厉2
作者信息 +

Timing tracking methods in millimeter-wave wireless communications

  • NIU Yong1, FENG Ziqi2, LI Yong2, JIN Depeng2, SU Li2
Author information +
文章历史 +

摘要

为了解决毫米波无线通信中模数转换器(analog to digital converter,ADC)无法在接收信号上实现高倍的过采样以及多径影响所导致的定时跟踪问题,该文基于2倍过采样数据,根据相关波形,利用Farrow插值给出2种适用于多径信道的定时跟踪方案,分别在频域均衡之前和之后进行误差精补偿。仿真结果表明:在Rummler信道下,定时频偏为时钟频率的20×10-6、误比特率为10-5时,这2种方案的信噪比(signal-to-noise ratio,SNR)与无定时频偏时的只相差2.5 dB左右,说明这2种方案在多径信道下具有良好的定时跟踪性能。

Abstract

The timing tracking of millimeter-wave wireless communications is very challenging since the analog to digital converters (ADCs) cannot provide high oversampling on the received signals and the multi-path channel causes tracking problems. Two timing tracking schemes based on twice over-sampled data and the waveform of the correlation values using Farrow interpolation are described in this paper for multi-path channels. The first scheme compensates for the timing error before channel equalization while the other compensates afterwards. Simulations show that with a timing error of 20×10-6 and a bit error rate (BER) of 10-5, the difference in the signal-to-noise ratios (SNRs) between these two systems and a system with no timing error is about 2.5 dB less than with the Rummler channel. Thus, both schemes provide good timing tracking for multi-path channels.

关键词

毫米波无线通信 / E-频段 / 多径信道 / 定时跟踪方法 / 频域均衡

Key words

millimeter-wave wireless communications / E-band / multi-path channels / timing tracking methods / frequency domain equalization (FDE)

引用本文

导出引用
牛勇, 冯子奇, 李勇, 金德鹏, 苏厉. 毫米波无线通信中的定时跟踪方案[J]. 清华大学学报(自然科学版). 2017, 57(1): 61-66 https://doi.org/10.16511/j.cnki.qhdxxb.2017.21.012
NIU Yong, FENG Ziqi, LI Yong, JIN Depeng, SU Li. Timing tracking methods in millimeter-wave wireless communications[J]. Journal of Tsinghua University(Science and Technology). 2017, 57(1): 61-66 https://doi.org/10.16511/j.cnki.qhdxxb.2017.21.012
中图分类号: TN928   

参考文献

[1] Dyadyuk V, Guo Y J, Bunton J D. Multi-gigabit wireless communication technology in the E-band[C]//IEEE Wireless VITAE 2009. Aalborg, Denmark:IEEE Press, 2009:137-141. [2] Wells J. E-Band Wireless Technology[R]. San Diego, CA, USA:E-Band Communications Corp., 2010. [3] NIU Yong, LI Yong, JIN Depeng, et al. A survey of millimeter wave communications (mmWave) for 5G:Opportunities and challenges[J]. Wireless Networks, 2015, 21(8):2657-2676. [4] HE Zhongxia, CHEN Jingjing, LI Yinggang, et al. A novel FPGA-based 2.5Gbps D-QPSK modem for high capacity microwave radios[C]//2010 IEEE ICC. Cape Town, South Africa:IEEE Press, 2010:1-4. [5] Kang M S, Kim B S, Kim K S, et al. Wireless PtP system in E-band for gigabit Ethernet[C]//2010 The 12th International Conference on Advanced Communication Technology (ICACT). Gangwon-Do, South Korea:IEEE Press, 2010:733-736. [6] Dyadyuk V, Bunton J D, Pathikulangara J, et al. A multigigabit millimeter-wave communication system with improved spectral efficiency[J], IEEE Transactions on Microwave Theory and Techniques, 2007, 55(12):2813-2821. [7] 陈晖, 易克初, 李文铎. 高速数字解调中的并行处理算法[J]. 电子科技大学学报, 2010, 39(3):340-345. CHEN Hui, YI Kechu, LI Wenduo. Parallel processing algorithms in high rate digital demodulation[J]. Journal of University of Electronic Science and Technology of China, 2010, 39(3):340-345. (in Chinese) [8] LIN Changxing, SHAO Beibei, ZHANG Jian. A high data rate parallel demodulator suited to FPGA implementation[C]//Intelligent Signal Processing and Communication Systems (ISPACS). Chengdu, China:IEEE Press, 2011:1-4. [9] 杨磊, 陈金树. 高速全数字解调器的并行码元同步设计[J]. 微计算机信息(测控自动化), 2008, 24(13):288-289. YANG Lei, CHEN Jinshu. Symbol synchronization design in high-speed all-digital parallel demodulator[J]. Microcomputer Information, 2008, 24(13):288-289. (in Chinese) [10] 卢大成. IEEE 802.11ad单载波物理层关键技术研究[D]. 北京:清华大学, 2012. LU Dacheng. Research on IEEE 802.11ad Single-Carrier Physical Layer[D]. Beijing:Tsinghua University, 2012. (in Chinese) [11] 张国斌, 黄湧. IEEE802.16a单载波频域均衡方案的仿真[J]. 电讯技术, 2007, 47(3):125-130. ZHANG Guobin, HUANG Yong. Simulation of IEEE802.16a single-carrier frequency domain equalization scheme[J]. Telecommunication Engineering, 2007, 47(3):125-130. (in Chinese) [12] 唐杰敏, 葛万成. 单载波频域均衡系统的研究[J]. 计算机知识与技术:学术交流, 2007, 25(20):39-43. TANG Jiemin, GE Wancheng. Research on single carrier-frequency domain equalization[J]. Computer Knowledge and Technology (Academic Exchange), 2007, 25(20):39-43. (in Chinese) [13] 陈晨. 单载波频域均衡(SC-FDE)系统研究和实现[D]. 杭州:浙江大学, 2006. CHEN Chen. Research and Implementation on Single Carrier-Frequency Domain Equalization System[D]. Hangzhou:Zhejiang University, 2006. (in Chinese) [14] 王军. 地面数字电视广播的同步和信道估计算法研究[D]. 北京:清华大学, 2003. WANG Jun. Studies on Synchronization and Channel Estimation Algorithms for Digital TV Terrestrial Broadcasting[D]. Beijing:Tsinghua University, 2003. (in Chinese) [15] Rice M. Digital Communications:A Discrete-Time Approach[M]. United States:Pearson Education, 2011. [16] Gardner F M. Demodulator reference recovery techniques suited for digital implementation, ESTEC Contract No. 6847/86/NL/DG[R]. Brussels, Belgium:European Space Agency, 1988.

PDF(1173 KB)

Accesses

Citation

Detail

段落导航
相关文章

/