基于骑车人目标识别的骑车人保护系统是保护道路环境中骑车人的重要手段。该文提出了骑车人目标的候选区域选择方法,并结合基于深度卷积神经网络的目标分类与定位方法,实现了骑车人目标的有效识别。候选区域选择方法可分为3部分:骑车人共有显著性区域检测、基于冗余策略的候选区域生成和基于车载视觉几何约束的候选区域选择。在公开的骑车人数据库上进行的对比试验表明:相对于现有的目标候选区域选择及目标识别方法,该方法显著提升了骑车人目标的识别率及识别精度,进而验证了该方法的有效性。
Abstract
Cyclist protection systems based on cyclist detection methods are needed to protect cyclists from road traffic. This paper presents a detection proposal method and a cyclist detection method using deep convolutional neural networks to classify and locate cyclists. The detection proposal method uses cyclist shared salient region detection, redundancy-based detection and geometric constraint-based detection. Tests using a public cyclist dataset show that this method significantly outperforms state-of-the-art detection proposals, which verifies the effectiveness of this method.
关键词
目标识别 /
骑车人识别 /
目标候选区域选择 /
卷积神经网络
Key words
object detection /
cyclist detection /
detection proposal /
convolutional neural network
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Toroyan T. WHO Global Status Report on Road Safety 2015 [R]. Geneva: World Health Organization, 2015. [2] Geronimo D, Lopez A M, Sappa A D, et al. Survey of pedestrian detection for advanced driver assistance systems [J]. IEEE Trans on PAMI, 2010, 32(7): 1239-1258. [3] LI Tong, CAO Xianbin, XU Yanwu. An effective crossing cyclist detection on a moving vehicle [C]//Proc 8th Intelligent Control and Automation. Jinan, 2010: 368-372. [4] 岳昊, 邵春福, 赵熠. 基于 BP 神经网络的行人和自行车交通识别方法[J]. 北京交通大学学报, 2008, 32(3): 46-49.YUE Hao, SHAO Chunfu, ZHAO Yi. A study on pedestrian and cyclist recognition based on BP neural network [J]. Journal of Beijing Jiaotong University, 2008, 32(3): 46-49. (in Chinese) [5] Cho H, Rybski P E, ZHANG Wende. Vision-based bicyclist detection and tracking for intelligent vehicles [C]//Proc IEEE IV. San Diego, 2010: 454-461. [6] YANG Kai, LIU Chao, ZHENG Jiangyu, et al. Bicyclist detection in large scale naturalistic driving video [C]//Proc IEEE ITSC. Tsingtao, 2014: 1638-1643. [7] TIAN Wei, Lauer M. Fast cyclist detection by cascaded detector and geometric constraint [C]//Proc IEEE ITSC. Canary Islands, 2015: 1286-1291. [8] LI Xiaofei, Flohr F, YANG Yue, et al. A new benchmark for vision-based cyclist detection [C]//Proc IEEE IV. Gothenburg, 2016: 1028-1033. [9] Nam W, Dollár P, Han J H. Local decorrelation for improved pedestrian detection [C]//Proc NIPS. Montreal, 2014: 424-432. [10] Duda R O, Hart P E, Stork D G. Pattern Classification [M]. New York: John Wiley & Sons, 2012. [11] Girshick R, Donahue J, Darrell T, et al. Region-based convolutional networks for accurate object detection and segmentation [J]. IEEE Trans on PAMI, 2016, 38(1): 142-158. [12] Girshick R. Fast R-CNN [C]//Proc IEEE ICCV. Santiago, 2015: 1440-1448. [13] Uijlings J, Sande K, Gevers T, et al. Selective search for object recognition [J]. Int J Comput Vis, 2010, 104(2): 154-171. [14] Dollár P, Zitnick C L. Fast edge detection using structured forests [J]. IEEE Trans on PAMI, 2015, 37(8): 1558-1570.